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ABSTRACT 

Two new approaches are proposed for determination by Thomson scattering lidar of the electron temperature in 
thermonuclear fusion plasmas. They are based on an analysis of the relativistic Thomson scattering spectrum. One of 
them is based on the unambiguous temperature dependence of the ratio of the return-signal powers of two spectral 
regions. The second approach is based on the unambiguous temperature dependence of the “center-of-mass wavelength” 
of the lidar-return spectrum. Analytical expressions are derived of the corresponding errors in the determination of the 
electron temperature. Their validity is confirmed by computer simulations. On the basis of the theoretical expressions a 
comparison is performed between the potential accuracies of the new methods and the routine fitting approach. As a 
result it is shown that the new approaches would have comparable efficiency with the fitting approach. Thus the three 
(the fitting and the novel) approaches may be used for mutually validating the results obtained for the electron 
temperature. They may be used as well for distinguishing the real inhomogeneities in the recovered temperature profiles 
from apparent ones due to statistical fluctuations. The novel approaches may also have some practical advantages 
consisting of the simple, clear and stable measurement procedure without any hypotheses or other considerations about 
the weight or the variance of the experimental data or the goodness of the fit. 

Keywords: Thomson scattering lidar, fusion plasma diagnostics, electron temperature profiles 
 

1. INTRODUCTION 
As is well known, the realization of controllable nuclear fusion would ensure the access of human civilization to a 
practically inexhaustible source of energy. Therefore extreme investigatory and financial efforts have been made for 
solving this crucial-to-humanity task. Among the nuclear fusion systems developed so far with magnetic or inertial 
plasma confinement, the Tokamak systems of the former type appear to be the most promising ones. In the recent years, 
just in the Tokamak-type fusion reactor JET one realized deuteron-triton fusion during 3s, at a maximum produced 
energy of 21 MJ, mean power of 16.1 MW, and output-to-input power ratio of the order of 0.65.  

Effective observation and control of the fusion process is possible only on the basis of effective plasma diagnostics 
involving the determination with high accuracy and (spatio-temporal) resolution of the electron temperature Te and 
concentration ne in the reactive zone. Because of the high characteristic temperatures [~ (1-4)×108 K] and pressures 
[~2.76-11.04×105 Pa] in this case, the only effective methods for diagnostics turn out to be the contactless, passive and 
active optical or microwave ones. Among these, the Thomson-scattering-based lidar-type methods are especially 
appropriate for simultaneous determination of electron temperature and concentration profiles in fusion plasmas. The 
approach having been used so far for electron temperature and pressure measurement is based on log-linear or non-linear 
fit of the experimentally-obtained, relativistically-thermally-broadened lidar-return spectra to the corresponding 
theoretical expression. 

Except the fitting approach, one may develop some new complimentary approaches for determination of the electron 
temperature and concentration on the basis of an analysis of the relativistic Thomson scattering (TS) spectrum. We 
propose here two such approaches for measuring the electron temperature. One of them is based on the unambiguous 
temperature dependence of the ratio of the return-signal powers of two spectral regions. The second approach is based on 
the unambiguous temperature dependence of the “center-of-mass wavelength” of the lidar-return spectrum. The 
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significance of the development of different approaches is that they would mutually validate the results obtained for Te. 
Moreover, the use of several independent measurement approaches could help to distinguish the real inhomogeneities in 
the recovered temperature profiles from seeming ones due to statistical fluctuations. Therefore, the main purpose of our 
investigations described here is to estimate analytically and by simulations and to compare the potential temperature-
measurement accuracies of the three above-mentioned approaches. For this purpose analytical expressions have been 
derived for the corresponding relative errors in the determination of the electron temperature. Also, the validity of the 
expressions derived has been confirmed by computer simulations. The comparative numerical analysis of these 
expressions shows that after an optimization the new approaches would have comparable efficiency with the fitting 
approach at temperatures Te > 1 keV. Some practical advantages of the novel approaches consist in the simple, clear and 
stable measurement procedures without special assumptions about the weight or the variance of the experimental data or 
considerations about the goodness of the fit. 

In the following Section 2 we describe the TS lidar return signal from fusion plasmas and the relevant plasma light 
background. The noise effects are also briefly discussed there. The new approaches proposed for measuring the electron 
temperature are described in Section 3. Then, the accuracy is analyzed theoretically of all the Te-measurement 
approaches (the fitting approach and the new ones). In Section 4, the results from Monte Carlo simulations are described 
that verify the expressions obtained theoretically for the corresponding errors in the determination of Te. Also, on the 
basis of the theoretical expressions, the potential accuracies (efficiencies) of the different approaches are numerically 
compared and discussed. The main results and conclusions from the investigations are summarized in Section 5. 

2. LIDAR SIGNAL AND ACCOMPANYING NOISE 
In this section we consider and describe the TS lidar return signal in the terms of the lidar practice and theory. 

2.1 Lidar equation 

The single-scattering lidar equation is the main instrument for quantitative analysis of the Thomson scattering lidar 
profiles. It describes the relation between the measured lidar profile (the time-to-range resolved profile of the received 
backscattered light power), the parameters of the lidar system, and the characteristics of the investigated medium (high-
temperature plasma) along the lidar line of sight (LOS). When the effective pulse response shape of the lidar (which is a 
convolution of the sensing laser pulse shape and the pulse response function of the receiving electronics) is shorter than 
the least longitudinal variation scale of the characteristics of the fusion plasma the short-pulse (δ-pulse) lidar equation is 
in power. The spectral form of the short-pulse lidar equation is: 
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where P[λs;t(z)] is the mean lidar return signal that is proportional to the backscattered (at angle π) light power received 
at the moment t=t(z) after the pulse emission and z is the LOS coordinate (distance) of the corresponding scattering 
volume with respect say to the receiving aperture plane; t(z) is unambiguous linear function of z that may have, e.g., the 
form t=(2z-R)/c, where R is the LOS coordinate of the “point of emitting” the laser pulse at a reference initial moment 
t=0; λi and λs are respectively the wavelengths of the incident and the backscattered radiation; K(λi,λs)=Kt(λi)Kt(λs) 
Kf(λs)Kq(λs), Kt(λi), Kt(λs), Kf(λs) and Kq(λs) are respectively the wavelength-dependent optical transmittance of the 
plasma-irradiating path, the optical transmittance of the scattered-light collecting path, the receiver filter spectral 
characteristic, and the quantum efficiency of the photon detection; E0(λi) is the incident pulse energy; A is the receiving 
aperture area; η(λs,z) is the lidar receiving efficiency including in general the vignetting effect; c is the speed of light; 
β[λi;λs; ne(z),Te(z)] is the Thomson backscattering coefficient normalized by λi, at a distance z and a wavelength λs, that 
is given (according to Mattioli1) by the expression  
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ro is the classical electron radius, ne(z) is the electron concentration profile along the LOS, vth(z) =[2kBTe(z)/me]1/2 is the 
mean thermal velocity of the electrons, Te(z) is the electron temperature profile along the LOS, me is the electron rest 
mass, kB is the Boltzmann constant, and α(λi,z) and α(λs,z) are respectively the extinction coefficients for λi and λs at a 

current distance z. Let us note that practically 1')]',()',([exp
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more accurate expressions of β[λi;λs; ne(z),Te(z)] (see e.g.2) than that given by Eq.(2). However, the difference in the 
results obtained for β is small (< 3.8 % for Te<6 keV). Therefore we shall use the simpler and more compact Eq.(2) for a 
preliminary estimation and a comparison of the statistical and systematic errors in the determination of Te  by different 
approaches. For completeness, a comparison between the expression for β of Mattioli1 [Eq.(2)] and that of Naito et al.2 is 
given in Appendix A.  

In Eq.(1) one may write that P=Nhνs and E0=N0hνi , where N=N[λs;t(z)] is the photon detection rate, N0 is the number of 
photons in the sensing laser pulse, h is the Planck constant, and νs,i =c/λs,i. Then, the short-pulse lidar equation describing 
the photon detection rate for the spectral interval [λs, λs+dλs] has the form 
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where Kn(λi,λs)=K(λi,λs)(νi/νs)=K(λi,λs)(λs/λi). For the photon detection rate for a spectral interval [λs1,λs2] we may write 
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Eq.(2) may also be written in the form  
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detection rate over the whole spectral range.  

Let us write at last for completeness the “long-pulse” lidar equation that is valid at arbitrarily long effective pulse-
response shape of the lidar with respect to the characteristic spatial variation scales in plasma. It has the form:  
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where f(θ) [s-1]  is the effective pulse response function. For a spectral interval [λs1,λs2] with central wavelength λo 
=(λs1+λs2)/2 , on the basis of Eq.(7) we obtain the following expression of the detected signal power 
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As it is mentioned above, the effective pulse response shape of the lidar is a convolution of the sensing laser pulse shape 
and the pulse response function of the receiving electronics. In turn, the latter is a convolution of the pulse response 
shape of the photon detector and that of the digitizer. For estimating the duration τ (and, respectively, the length cτ ) of 
the effective pulse response it is expedient to approximate each of the aforementioned shapes by Gaussian functions 
(e.g.3,4). Then the expression for τ  will be 2/1222 )( didep ττττ ++= , where pτ , deτ , and diτ  are respectively the durations 
of the laser pulse, the detector response shape, and the digitizer response shape.  

2.2 Plasma light background 

The plasma light spectrum consists in general of line and continuum components4-9. The line components are due to 
bound-bound electron transitions in atoms and ions and to electron cyclotron emission in magnetic plasma. The 
continuum components are due to recombination (free-bound electron transitions) and bremsstrahlung resulting mainly 
from electron-ion collisions. Waves or other modes of collective motion of charged particles are also a source of plasma 
emission. In pure fusion plasma the thermal electron energy (> 1keV) essentially exceeds the ionization potential of the 
hydrogen atom (13.6 eV). Therefore, in the visible wavelength range the radiation due to bound-bound and free-bound 
electron transitions is feeble and negligible as compared with the bremsstrahlung of electrons in the Coulomb field of 
deuterium and tritium nuclei. The presence of heavy-element impurities in the fusion plasma leads to the appearance of 
line radiation component in the visible range. However, the impact of this component is smaller than that of the 
bremsstrahlung9. Note as well that the cyclotron emission spectrum as well as that of the collective-motion-due emission 
occupy the wavelength region above the far infrared. Thus, it turns out that bremsstrahlung is the dominating component 
of the fusion plasma light in the visible sprectral range.  

The bremsstrahlung photon emissivity spectrum from fusion plasma per unit solid angle is described quantitatively by 
the expression (see e.g. 6,9) 
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where Zeff is the effective ion charge, ni is the ion concentration, the quantities kBTe and hc/λ are in eV, exp[-hc/(λ kBTe)] 
≈1 and ffg~  is the so-called Gaunt factor that depends weakly on Te and the radiation wavelength λ, and accounts for the 
quantum effects, the electron screening of nuclei, etc.10  Among the variety of expressions and values obtained and 
recommended for ffg~  of different types of plasma, we shall accept here (combining a recent suggestion11,12 and a 
former result10 ) that 
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where kBTe and hc/λ are in eV again. On the basis of Eqs.(9) and (10), assuming that ni=ne and Zeff =1, for the photon 
counting rate spectrum of the bremsstrahlung-due parasitic signal Nbr(λs) interfering with the useful signal N[λs;t(z)], we 
obtain 
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where AD is the photon detector effective area, ΔΩD is the solid angle determined by the relative aperture of the  
receiving optics, and the product ADΔΩD is the so-called etendue. For a spectral interval [λs1,λs2] we have 
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where ],[ 21 sss λλλ ∈ . 

2.3 Noise effects  

The noise accompanying the lidar return signal may consist of various components. Let us first consider the photon 
counting mode of detection where the photon counts (single photoelectron pulses) registered during a time interval T are 
in fact the signal. In this case the signal itself undergoes Poisson fluctuations whose variance Var{N[λs1,λs2;t(z)]T} is 
equal to the mean signal value, that is, to the mean number of photon counts N[λs1,λs2;t(z)]T for the period T. Obviously, 
the signal-to-noise ratio SNR=[(NT)2/Var{NT}]1/2 is then equal to (NT)1/2. The parasitic background interfering with the 
useful signal consists of plasma light photon counts and dark counts due to thermonic and autoelectronic emission. It 
also has Poisson statistics with mean value Nb(λs1,λs2)T=[Nbr(λs1,λs2)+Ndc]T and variance Var{Nb(λs1,λs2)T}=Nb(λs1,λs2)T, 
where Ndc is the dark count rate. The background leads to adding Nb(λs1,λs2)T to the mean value and to the variance of 
the measured signal. To eliminate the bias-up of the signal one should subtract from the measurement result an 
experimental estimate TN ssb ),(ˆ

21 λλ  of NbT. Then the bias will be eliminated but a new fluctuation component will be 

added, with variance }),(ˆ{Var 21 TN ssb λλ . At a precise enough estimate TNb
ˆ , based, e.g., on a measurement for a time 

interval exceeding essentially T, we shall have Var{ TNb
ˆ } << NbT. Then the overall measurement variance will remain 

equal to N[λs1,λs2;t(z)]+ Nb(λs1,λs2), and the signal-to-noise ratio will be  

SNR=(NT)1/2/(1 + Nb/N )1/2     .      (13) 

In practice, the single-photoelectron flux after the photocathode is amplified in a microchannel plate (MCP) 
photomultiplier tube (PMT) and is transformed into a signal current i (or voltage v)13-15. The process of amplifying leads 
to the arising of an additional noise (in excess of the Poisson noise) due to the fluctuations of the single-electron pulse 
shapes and charges. Then the ensemble-mean signal photocurrent (concerning say the useful signal) is i[λs1,λs2;t(z)]=G 
N[λs1,λs2;t(z)], where G (somewhere called the gain3) should be interpreted as the mean single-(photo)electron-induced 
charge through the PMT circuit. The corresponding photocurrent variance is Var{i}=FeG2N/θ, where θ =τde is the photon 
detector response time, and Fe is an excess-noise factor accounting for the noise enhancement3,14. Then the signal-to-
noise ratio SNR=i/Var{i}1/2=(Nθ/Fe)1/2. In an analogous way one may obtain that the variance of the background current 
ib=GNb(λs1,λs2) is Var{ib}=FeG2Nb/θ, and the overall measurement signal-to-noise ratio is SNR = i/(Var{i}+ Var{ib})1/2 = 
(Nθ /Fe)1/2/(1+ Nb/N)1/2. 

The PMT output is finally digitized and thus represented in a digital code describing, e.g., an average current over the 
digitizing step Td. Certainly the measurement procedure is implied to include the above-discussed subtraction of an 
accurate estimate of the background (here, of ib ). Then, if Td<θ  the same as above expression for SNR is valid in 
practice. In the opposite case, when θ<Td, the same expression for SNR is obtained again, but with Td instead of θ 13. 
Otherwise, one may write that 

SNR=[N max(θ,Td)/Fe]1/2/(1 + Nb/N )1/2    .      (14) 

The comparison of Eq.(14) and Eq.(13) suggests that the real measurement procedure is equivalent to a photon counting 
signal detection with Fe-times lower quantum efficiency and measurement interval T=max(θ,Td). This analogy is 
physically and experimentally substantiated in Ref.16. It is valid as well when measuring only the useful signal without 
background (Nb=0), or only the background in the absence of signal (see above the expressions of ib and Var{ib}). The 
estimate T=max(θ,Td) of the effective photon counting interval (conditioning the measurement SNR) is physically 
interpretable by that the longer of both the time scales θ  and Td determines in fact the (better) averaging (spectrum 
narrowing) of the signal fluctuations13. Usually θ >Td in the contemporary photon detection devices of interest3,14,15. The 
indicated analogy is especially useful for computer simulations and error analysis11,14-16. Note meanwhile that digitizing 
is also a source of noise that could be minimized to a negligible value by a proper choice of the digitizer scale.  
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3. ERRORS IN THE DETERMINATION BY DIFFERENT APPROACHES OF THE ELECTRON 
TEMPERATURE IN THERMONUCLEAR PLASMA 

In this Section we shall consider single-shot TS lidar measurement of Te in fusion plasma at a fixed LOS point z0. 
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Fig. 1. Thomson backscattering spectrum for different 
electron temperatures at a sensing radiation 
wavelength λi=694 nm. The working spectral 
interval employed is [λl,λu] with λl=350 nm and 
λu=850 nm. The spectral subintervals used in the 
“center-of-mass wavelength” and fitting approaches 
are also shown.  

 

3.1 Linear error propagation 

Let us consider M spectral intervals [λs1k,λs2k] (k=1,...M) from the relativistic Thomson backscattering spectrum from 
fusion plasma (see Fig.1), which are selected by the receiving optical system of the lidar. The mean detected signals in 
the corresponding measurement channels may be denoted as ik= i[λs1k,λs2k;t(z0);ne,Te]=ik(Te), where ne and Te are 
respectively the electron concentration and temperature at z=z0. We shall further assume that Te may vary at a constant 
value of ne. Suppose as well that some composition of ik exists,  

C(i1, i2,…, iM)=f(Te)  ,      (15) 

that is unambiguous function, f(Te), of the electron temperature. Then, the temperature Te is expressible by the inverse 
function 

Te = f -1(C) =ϕ [C(i1, i2,…, iM)] .       (16) 

The measurement process provides in practice some estimates (statistical realizations) kî  of the signals ik. The 

corresponding estimate êT of Te is given in this case as  
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At relatively small fluctuations of kî  around ik (at large enough SNR>>1) they may be considered as differential 

quantities kkk iidi −= ˆ . This allows one, by using Taylor series expansion, to represent eT̂  in the form 
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where )(/1/ eTfdCd ′=ϕ , and 3
ee

22 )](/[)(/ TfTfdCd ′′′−=ϕ . An estimate of the rms error δTe in the determination 
of Te is obtainable from Eq.(18) as  
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where the signals ik and il for l ≠ k are naturally supposed to be statistically independent of each other, and .  denotes 
ensemble average. Also, an estimate of the statistical bias δbTe may be obtained as  
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Let us preliminary note that in the concrete results obtained below for δTe and δbTe , we shall have taken into account the 
relations (see Sec.2.3) ik = GNk and Var{ik}=(FeG2/T)(Nk+Nbk), where Nk and Nbk are respectively the signal and the 
background photocathode counting rates in the kth channel, and T=max(θ,Td).  

3.2 Approach based on the temperature dependence of the ratio of the signals from two spectral intervals  

Consider now two spectral intervals of the relativistic Thomson backscattering spectrum, [λs11,λs21] and [λs12,λs22] (k=1 
and 2, respectively). According to Eq.(6), the ratio C of the signals i1 and i2  is given as   
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This ratio is unambiguous function, 

C = f(Te) ,       (22) 

of the electron temperature Te and may be used for measuring it. 

The rms error estimate δTe in the determination of the electron temperature Te, obtained by linear error transfer, is given 
by the following expression 
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So it is clear that the measurement accuracy is naturally proportional to the measurement sensitivity ee dTTfd /)(ln  
and the mean signal intensities ( ∝ N1 and N2 ). The corresponding statistical bias is 
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3.3 Approach based on the temperature dependence of the “center-of-mass wavelength” of the relativistic 
Thomson spectrum 

Let us consider again M spectral intervals (λs1k,λs2k), k=1,...,M. The central wavelength of the kth interval is λk 
=(λs1k+λs2k)/2. Then the center-of-mass wavelength λ is defined as  
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where f(Te) is unambiguous function of the electron temperature (see also Fig.1). An explicit writing of Eq.(25) is  
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The linear error propagation approach leads in this case to the following expression of the rms error δTe in the 
determination of Te on the basis of the dependence λ = f(Te): 
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The corresponding expression of the statistical bias is  
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3.4 Approach based on fitting the data to the temperature-dependent relativistic Thomson spectrum 

3.4.1 Log-linear fit 

In this case, following Mattioli and Papoular17, we obtain that (when Te is in eV)  

bee TT σδ 26104 −×=    ,      (29) 

where 2)/( thvcb −=  is one of the parameters to be determined by fitting, 
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is the rms error in the determination of b, )]/1(/[SNR 2
kbkekk NNFTN += , Nk is estimated by using Eq.(3), and  
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The statistical bias is obtained in the form  
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3.4.1 Non-linear fit 

In this case we consider 
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na  and b=c/vth as two parameters to be determined by fitting. Then, 

following the common procedure of non-linear least-squares fitting18 of the experimental data to the theoretical TS 
spectrum, we obtain two transcendental in general equations with respect to a and b. One of these equations is linear with 
respect to a and allows one to express it (a) through b and the experimental data kî . By replacing the expression obtained 

for a in the second equation, we obtain a relation between b and kî . On the basis of this relation we further obtain 

another one, between the differential db of b (and respectively dTe of Te ) and the differentials dik of kî . At last, by 
averaging (dTe)2 we obtain an estimate of δTe =<(dTe)2>1/2  depending on Var{ik} and ik. What is interesting to note here 
is that the result we have obtained for δTe, after cumbersome derivations, coincides absolutely with the one obtained in 
the log-linear case. That is, δTe is given again by Eqs.(29) and (30). By using the same implicit differentiation approach, 
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4. SIMULATIONS AND NUMERICAL ANALYSIS 
The simulations and the analysis performed below will be based on the analogy commented in Sec.2.3, between the real 
measurement procedure and a photon detection with measurement interval T=max(θ,Td) and Fe – times lower 
photocathode quantum efficiency compared to the true one, Kq. In other words, the photon counts NT, due to the useful 
signal, and the background photon counts NbT=NbrT, will be evaluated using Eqs.(4) and (12), respectively, where Kq is 
replaced by the so-called effective quantum efficiency EQE=Kq/Fe

11,14,15. The dark counts will not be especially 
considered.  

The fusion plasma will be supposed to occupy the LOS region between z=7 m and z=9 m. It will be supposed as well 
that z0=8 m. The longitudinal (LOS) distributions of the electron temperature and concentration will be considered as 
uniform. Furthermore, the temperature will be varied (from Te=0.1 keV to Te=10 keV with a step ΔTe=0.1 keV) at a 
constant value of ne=3.1019 m-3. The receiving aperture (receiving mirror) diameter Dm and the etendue E=AD ΔΩD of the 
receiving optics are assumed to be respectively Dm=0.7 m and E=4 cm2sr. The sensing laser radiation is supposed to have 
wavelength λι=694 nm and to enter the active zone through a penetration aperture with longitudinal coordinate zp=7 m 
and diameter Dp=0.26 m. The sensing laser pulse-beam will be assumed to have energy E0=0.6 J, duration τp=300 ps, and 
diameter Dl=0.07 m. Under the above-described conditions the penetration aperture will not affect the process of 
collection of the backscattered radiation. That is, the vignetting factor in this case will be equal to unity. Unlike that, the 
vignetting will essentially reduce the plasma light background. In principle, in the latter case the vignetting factor, Fv, 
could be evaluated. Nevertheless, it is more expedient to be determined by suitable calibration. According to some 
preliminary estimates we have made and to some available data11, the vignetting factor may be taken to be Fv=0.33. We 
shall also assume that the optical background is additionally lowered two times (e.g.6) by using polarizer for selecting 
only the polarization component of the lidar return that is parallel to the polarization of the sensing radiation. The 
effective photon counting interval T=max(θ,Td) will be accepted to have a duration of 250 ps. 

In accordance with the spectral sensitivity ranges of the available photon detectors14, we shall suppose observing the TS 
spectrum within the wavelength region from λl=350 nm to λu=850 nm. For applying the first of the concerned here Te–
measurement methods, the wavelength interval [λl,λu] should be divided into two subintervals [λs11,λs21] and [λs12,λs22], 
where λs21=λs12=λm. For applying the center-of-mass approach or the fitting approach, the interval [λl,λu] should be 
divided into several subintervals. Further, we assume that Kt(λi)=0.75, Kt(λs)=0.25 for λs∈ [λl,λu], Kf(λs)=1, and 
Kq(λs)/Fe=EQE=0.05 for all the measurement channels (about such a possibility one could see, e.g., in 14). Finally, 
because of the weak spectral dependence of the Gaunt factor, the evaluation of the photon counting rate of the 
bremsstrahlung will be simplified by setting is λλ =  in Eq.(12). 

The described above characteristic parameters are chosen to be as close as possible to those of the JET TS lidar system. 

4.1 Estimation by Monte-Carlo simulations of the error in the determination of Te by the new approaches 

4.1.1 Ratio of the signals from two spectral regions  

In this case we consider the above-described pairs of spectral intervals [λl, λm] and [λm,λu]. For each value of Te the 
corresponding mean TS photon count rates are evaluated on the basis of Eq.(4). They may be denoted by N1(Te) and 
N2(Te). The corresponding mean bremsstrahlung photon count rates, Nbr1(Te) and Nbr2(Te) are evaluated on the basis of 
Eq.(12) with is λλ = , taking into account the vignetting and polarization effects. Then on the basis of the results 
obtained, the functions  

f(Te)=N1(Te)/N2(Te)     (33) 

are determined (Fig.2) as well as the corresponding temperature-dependent errors and biases, δTe(Te) and δbTe(Te).  

The Monte-Carlo simulations are performed in the following way. At known mean values N1(Te)T and N2(Te)T, and 
Nbr1(Te)T and Nbr2(Te)T, by using Poisson random-number generator we produce H=100 realizations, TTN e

l )(ˆ
1 , 

TTN e
l )(ˆ
2 , TTN e

l
br )(ˆ

1  and TTN e
l
br )(ˆ

2 , of the photon counts of the useful signal and the background; l=1,2,…,100. Then 

we compose the quantities TNTNTN br
l
br

l
111

ˆˆ −+  and TNTNTN br
l
br

l
222

ˆˆ −+ .  

Proc. of SPIE Vol. 7027  702711-9



 
 

 
 

Next, by using the reference functions f(Te) and the ratios ( TNTNTN br
l
br

l
111

ˆˆ −+ )/( TNTNTN br
l
br

l
222

ˆˆ −+ ) we obtain 

hundred estimates l
eT̂  of the electron temperature. Then, an estimate eTδ̂  of the rms error δTe will be  
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In Fig.3 we have compared a Monte-Carlo estimate eeeeer TTTTT /)(ˆ)(ˆ δδ = , of the relative error in the determination of 
the electron temperature, with the theoretical estimate δrTe(Te)=δTe(Te)/Te obtained by Eq.(23). It is seen that both the 
results are consistent. One may notice as well that lowering the value of λm leads to increasing δrTe, for Te < 1 keV, and 
to decreasing it, for Te > 1 keV. At the same temperatures (Te > 1 keV) the bias is evaluated to be two orders of 
magnitude lower than the rms error. 
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Fig. 2. Reference functions f(Te) [Eq.(33)] in the 
case of using the ratio of the signals from two 
spectral intervals. 

 

 

Fig. 3. Relative rms error δTe/Te in the determination of 
the electron temperature Te, vs Te, in the case of 
using the ratio of the signals from two spectral 
intervals. The theoretical results and the results 
from Monte-Carlo simulations are represented 
respectively by curves and points. 

4.1.2 Center-of-mass wavelength approach 

In this case M  spectral subintervals Δk=[λs1k,λs2k] are employed (Fig.1). The mean TS and background photon count rates 
Nk(Te) and Nbrk(Te) are evaluated by using Eqs.(4) and (12), respectively. Then, according to Eq.(25), the reference 
function λ(Te)=f(Te) is built (Fig.4). The knowledge of Nk(Te) and Nbrk(Te) allows one to determine, by using Eqs.(27) and 
(28), the temperature-dependent relative errors and biases δrTe(Te) and δ bTe(Te). The results δrTe(Te)obtained for six 
optimum “JET subintervals” are shown in Fig.5. 

The simulations are performed as in the preceding section. That is, at known mean values Nk(Te)T and Nbrk(Te)T, by 
Poisson random-number generator we produce H=100 realizations TTN e

l
k )(ˆ  and TTN e

l
k )(ˆ

br  of the useful-signal and the 

background photon counts; l=1,2,…,100. Afterwards we compose the quantities TTNTTNTTN eke
l

ke
l
k )()(ˆ)(ˆ

brbr −+  to 

use them, together with the reference function f(Te), for obtaining hundred estimates l
eT̂  of the electron temperature. 

Certainly, an estimate eTδ̂  of the measurement error δTe is given again by Eq.(34). A Monte-Carlo estimate )(ˆ
ee TTδ  is 

compared in Fig.5 with the theoretical estimate obtained by Eq.(27). It is seen that the result from the simulations is in 
accordance with the theoretical result. The estimation of the bias δbTe shows that for Te > 1 keV, for both the center-of-
mass and the fitting approaches, it is again two orders of magnitude lower than the rms error δTe.  
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Fig. 4. Reference function λ=f(Te) when using the center-

of-mass wavelength approach with six optimum 
JET subintervals shown in Fig.1. 

 

 

Fig. 5. Relative rms error δTe/Te in the determination of the 
electron temperature Te, vs Te, when using the center-of-
mass wavelength approach with six JET spectral 
channels. The theoretical results and the results from 
Monte-Carlo simulations are represented respectively by 
curve and circles. 

4.2 Potential accuracies of the different approaches for measuring Te  

The relative rms error δrTe=δTe/Te may be considered as a reciprocal characteristic of the potential accuracy (potential 
efficiency) of a method for measuring Te. Therefore, to compare the efficiencies of the three Te-measurement approaches 
under consideration here, we have compared graphically in Fig.6 the corresponding relative errors δrTe(Te)=δTe(Te)/Te. 
For calculation of the errors we have used Eqs.(23), (27), and (30). The fitting approach is assumed to employ the same 
number and allocation of the spectral intervals Δk as the center-of-mass wavelength approach. The experimental 
conditions and characteristic parameters supposed are described in detail above. It is seen in the Figure that for Te>1 keV 
the three approaches have practically the same efficiency with a slight advantage of the fitting approach. Note as well 
that the “ratio-of-powers” approach is considered to use the whole spectral region [λl,λu]; its efficiency will naturally 
decrease with narrowing the spectral subintervals employed. For Te<1 keV the novel approaches have lower efficiency 
because of lower Te -measurement sensitivity. 
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Fig. 6. Theoretically estimated relative rms errors δTe/Te, vs Te, in the determination of the electron 
temperature Te by using the ratio of the signals from two spectral intervals, λm=600 nm (1) and λm=580 
nm (2); the center-of-mass wavelength (3), and the fitting approach (4). Curves (3) and (4) are evaluated 
assuming the use of the six optimum JET channels. 
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5. CONCLUSION 
In the present work we have proposed and estimated analytically and by simulations the potential accuracy (efficiency) 
of two novel approaches to measuring by TS lidar the electron temperature in thermonuclear plasmas. The approaches 
proposed are based on an analysis of the relativistic TS spectrum. One of them is based on the unambiguous temperature 
dependence of the ratio of the return-signal powers of two spectral regions. The second approach is based on the 
unambiguous temperature dependence of the “center-of-mass wavelength” of the lidar-return spectrum. The potential 
efficiency is characterized in fact by the temperature-dependent rms relative error in the determination of the electron 
temperature. Therefore, we have first derived analytical expressions of the corresponding temperature-measurement rms 
errors. The validity of the expressions derived is confirmed by Monte-Carlo simulations. We have considered as main 
sources of measurement uncertainties (noise) the bremsstrahlung-due plasma light background and the enhanced (in 
MCP PMT) photon-counting Poisson fluctuations. The comparison, under uniform experimental conditions, of the (log-
linear or non-linear) fitting approach with the novel approaches shows that at Te>1 keV the latter ones (at slightly larger 
rms error) may practically achieve the same efficiency as the fitting approach. Thus, the three approaches can be used for 
mutually validating the results obtained for the electron temperature. They may be used as well for distinguishing the 
real inhomogeneities in the recovered Te profiles from seeming ones due to statistical fluctuations. Practical advantages 
of the new approaches may be the simple, clear and stable measurement procedures without any additional hypothesis or 
considerations about the weight or the variance of the experimental data or the goodness of the fit. Note as well that the 
new approaches as well as the fitting approach lead to practically unbiased estimates of Te. 

It is useful to mention as well some additional conclusions resulting from the investigations performed. First, the 
effective measurement interval of the equivalent photon-counting signal detection is equal to the larger of the digitizing 
step and the response time of the photon detector. In practice, the larger and determinant quantity is the photodetector 
response time. And second, the linear error propagation estimates of the rms errors in the determination of the electron 
temperature by log-linear or non-linear fitting are given by the same expression.  

Further efforts, in the field concerned here, should be directed to investigating the distortion effect of a relatively long 
(with respect to the fusion plasma variation scales) lidar pulse response on the profiles of the electron temperature and 
concentration. It is also important and useful to see how could any deconvolution procedure help in this case.  
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APPENDIX A 
In order to reduce the effects of the stray light and the plasma light background, one usually selects by polarizer and 
measures only the polarization component of the TS lidar return that is parallel to the polarization of the incident 
(sensing) laser radiation. Taking into account the relativistic depolarization effects on the (back)scattered radiation, Naito 
et al. have derived a practically exact analytical expression of the TS spectrum. In the case of backscattering (at angle π) 
this expression may be written, e.g., in the form (see also 1,2), 

βNaito[λi;λs; ne(z),Te(z)]= βMattioli[λi;λs; ne(z),Te(z)][1+δ(q)] ,               (A1) 

where the expression of βMattioli[λi;λs; ne(z),Te(z)] is given by Eq.(5), 

δ(q) = {βNaito[λi;λs; ne(z),Te(z)] - βMattioli[λi;λs; ne(z),Te(z)]} / βMattioli[λi;λs; ne(z),Te(z)]               (A2) 

is the relative difference between the spectral distributions of Naito and Mattioli, 
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Fig. A1. Temperature dependence of the relative difference between the spectral distributions of Naito and Mattioli. 
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