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ABSTRACT

The influence is simulated of the atmospheric turbulent motion on the character and the accuracy of the radial velocity
profiles recovered by using a high-range-resolution coherent-Doppler-lidar approach we have developed recently. The
simulations are based on an original statistical spatio-temporal model of the turbulent radial-velocity fluctuations
supposed to have a von-Kàrmàn-like spectrum that closely approximates the well-known Kolmogorov-Obukhov
spectrum. The results from the simulations confirm the basic conclusions we have analytically deduced formerly about
the character of the recovered radial velocity profiles, depending on the duration of the lidar measurement procedure. In
this way the model adequacy is also substantiated.
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1.INTRODUCTION

Recently we have developed a novel coherent Doppler lidar approach for recovering with high range resolution of radial
(Doppler) velocity profiles in the atmosphere [1-4]. The approach concerned is based on an analysis of the
autocovariance of the complex heterodyne lidar signal and allows one to achieve a resolution interval below the sensing
laser pulse length. Averaging over some sufficient number N of conjecturally independent signal realizations (obtained
by N laser shots) is a way to obtain accurate autocovariance estimates. Such a measuring procedure would require
however a too long observation (data accumulation, measurement) time, e.g. of the order of many minutes, exceeding
not only all the correlation scales of the signal but also the period of stationarity of the atmosphere. The contemporary
powerful-enough pulsed-laser transmitters for coherent lidars can have a pulse repetition rate lkHz[5]. Thus, for a few
seconds they can provide a sufficiently large number of signal realizations to average the small-temporal-scale signal
fluctuations, due e.g. to the reflective-speckle and refractive-turbulence effects, and to the weak fast-varying turbulent
velocity fluctuations. At the same time the stronger, slowly varying turbulent velocity fluctuations, whose correlation
scales exceed the observation time, may not be averaged. Then the estimate obtained of the signal autocovariance could
be considered as containing an average, for the observation period, Doppler velocity profile. This profile should
coincide with the parent-population mean Doppler velocity profile (under stationary atmospheric conditions) when the
measurement time exceeds essentially the mean velocity-fluctuation correlation time; on the contrary, it should nearly
coincide with the instantaneous radial velocity profile when the measurement time is much shorter than the mean
correlation time. Such a physical interpretation of the profiles to be retrieved has initially been given in Ref.3, and then
analytically substantiated in Ref.4. A purpose of the present work is to verify by simulations the above-described
conception about the profiles to be retrieved. For this purpose an original statistical model has been developed and used
for the spatio-temporal turbulent fluctuations of the radial velocity in the atmosphere. Since this model itself may be of
independent interest and use for other atmospheric studies, another aim of the work is to describe it briefly and to prove
its efficiency in the simulation process.

2. ifiGH-RESOLUTION RETRIEVING OF DOPPLER-VELOCITY PROFILES

We shall consider here only the velocity-fluctuation effects and, certainly, the naturally present reflective-speckle
effects. Then the model of the coherent lidar signal is expressible in the following simplified form (see also [1,2]):

Ct / 2

I(t = 2z / c) = J[f(t
—2z / c)]1'2 exp[jcom (z)t]dA(z), (1)
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where I(t=2zIc) is the complex heterodyne lidar signal at the instant t (after the pulse emission) corresponding to the
pulse front position z along the lidar line of sight,j is imaginary unity; [0, z0] is the lidar blind zone; f(9) describes the

sensing pulse power shape normalized to its peak value; Wm (z) = wo z(z) — coh is the intermediate frequency, co is the

frequency of the sensing radiation, Wh is the local-oscillator frequency, (z) = 1 — 2V(z) I c , V(z) is the radial velocity

profile, c is the speed of light; dA(z) is a differential circular complex Gaussian random quantity such that
< dA(z)dA(z') >= 1(z)S(z — z')dzdz' , <> and 6 denote respectively ensemble average and delta function, and

1(z) describes [1-3] the maximum-resolved signal power profile obtainable at sufficiently short laser pulses (physical

8 - pulses).

The signal autocovariance Cov(t, 9) =< I (t)I(t + 0) > is obtainable from Eq. (1) in the form

Ct!?

Cov(t, 0) = jdz[f(t - 2z I c)f(t + 0 - 2z I c)]1!2 (z) < exp[jwm(z)8] > , (2)
zo

where < exp[j&m (z)O] > is an ensemble average over the realizations {V(z)} of the Doppler velocity profile; * denotes

complex conjugation. An estimate Côv(t, 0) of the autocovariance has usually been obtained on the basis of the relation

Côv(t, 9) = N1 'k (t)Ik (t + 9) , (3)

where Ik(t) (k=l,2,...,]V) are N signal realizations obtained by N laser shots. Assuming that only the reflective-speckle-
due signal fluctuations [described by dA(z)] are entirely averaged, Eq.(3) can be rewritten as [see also Eqs.(l) and (2)]:

Ct!? _________________

Côv(t, 9) = Jdz[f(t- 2z I c)f(t + 8 - 2z I c)}1!2z)exp[jw (z)O] , (4)
zo

where exp[jwm (z)9] = N1 exp[jwmk (z)9] , Wmk (z) = o Zk (z) — Wh Zk (z) = 1 — 2Vk (z) I c , and Vk(z) is the

realization of the radial-velocity profile at the k-th laser shot. The solution obtained of Eq.(2) with respect to
Wm (z = Ct I2) is expressible as

or

Wm (z = Ct I 2) = [(z)]1 I f(Q)] exp(-jt) , (5)

, (6)

where f() and R() are the Fourier transforms of functions f(9) and R(9) = Tm Coy' (9, 9 = 0) , ' denotes first

derivative with respect to 0 (taken at 0 =0), and H(z = Ct! 2) is the unique continuous solution of the following

(Volterra) integral equation
Ct!2

R(t = 2z Ic) = ff(t—2z'/ c)H(z')dz . (7)

Based on Eq.(4), °m (z) is deciphered to be equal in general to the arithmetic-mean intermediate-frequency profile

Wm(Z) = N1Wmk(Z)WO[l(2/C)N1Vk(Z)]Wh , (8)

that may be quite different from the ensemble-mean profile <Wm(Z) > CUo[l —2 < V(z) > / c] — Wh; Wm(Z) is an estimate

of the latter only when the measurement time T exceeds essentially the velocity fluctuation correlation time t, (see e.g.

[4]). In the opposite case (T<<t) corn (z) describes, in practice, an instantaneous intermediate-frequency (radial-velocity)

profile 0)rn (z) [V(z)].
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3. SPATIO-TEMPORAL STATISTICAL MODEL OF THE TURBULENT RADIAL-VELOCITY
FLUCTUATIONS

For simulating the realizations Vk(z) of the radial-velocity profile one should create an adequate spatio-temporal
statistical model of the radial-velocity fluctuations V(z, 9) =V(z,9)— < V(z, 9) > , taking into account the correlation

properties of the turbulent motion and the computer spatial and temporal sampling, with intervals \z and A9
respectively. This task is solved here through an appropriate linear filtration of a spatio-temporal normally-distributed
unitary-variance discrete white noise Wd (r = lL'r,9 = mE9) Wd (1, m) (1, m = representing the discrete

samples of a spectrally-limited continuous white noise with boundary wave-number K,, = " and boundary

frequency °b L9 . The resultant radial-velocity fluctuation field V(l, m) is then obtained as

P(l,m)=CflSwd(l-n,m-s) , (9)

where C,,, are the elements (filtering coefficients) of the infinite filtering matrix C={C}. An explicit expression of
we have derived and used in the simulations is

7t/2 ,r/t9
cns = o-vcns = o,r714(AzA9ri /16)1/2 JdK Jdwexp[j(wsA9 —Kniz)(K2 +K)5112

-,r/z —,r/M

x exp{—K2/(2K)—(o.--KV)2r2/8} , (10)

where = I :JdK(K2 + 1 6 exp(—K2 I K) , is the variance of the radial-ve1oci flucations, V and r1 are

some mean translational velocity and lifetime, respectively, of the radial-velocity inhomogeneities, I(0=1/1L0, L0 is the
outer turbulence scale, Km=5.92/lm, lml(l2CY", l jS the inner turbulence scale, and d=1.77. The derivation of
Eq.(10) is based on a von-Kàrmàn-like approximation of the spatial spectrum (and corresponding correlation or
structure functions) of the Doppler velocity fluctuations that closely approximates the well-known Kolmogorov-

Obukhov spectrum [2]. A property ofthe coeficients c,,, that is useful for numerical tests is that = 1.

4. SIMULATIONS

The complex heterodyne lidar signal I(t—2z/c) is synthesized according to the following discrete version of Eq.(l):
12

I(t = 2z/c) = [f(t—2z1 ic)]112 exp[jtom(z1)t][(z1)L\.Z]112 W1 (11)
1=11+1

where the (measurable) pulse shape f(9 ) is taken in the form represented in Fig.l (inset), L\z2 w1 corresponds

to dA(z,), the profile employed of t(z) is given in Fig. 1, w1 W = Wr + JW 5 a circular complex Gaussian random

quantity with zero mean value <W> <Wr> <Wi> 0 and unitary variance Dw =< w 2 >< W > + < W? >= 1

(< W, >< W? >= 1/ 2) , < Wr W>O and <W1 W1+2>O for S 0 , l = z0 I Az , 12 = Ct /(2z) , and z1 = lAz . The

realizations Wmk(Z) CO[l _2Vk (z)/ C] — Wk of the intermediate-frequency profile Wm(Z) [0m(2i)I are modeled

statistically by considering each realization Vk(z) of the Doppler velocity profile as a sum Vk (z) = Vm (z) + 1k (z) of the

ensemble-mean Doppler velocity profile Vm(Z) < V(z) > and the profile of the turbulent velocity fluctuations V,(z).

The profile of Vm (z) used in the simulations is shown in Fig. 3. Let us note that the temporal (spatial) variation scales of

both the profiles, c1(z) and Vm(Z), are chosen to be much smaller than the pulse duration (pulse length). The spatio-

temporal velocity fluctuation random field {V(z, 9 )} is built according to the procedure described in Sec.3 with
Az = 1.5 m, A19 =0.01 s, o=4 mis, r1 = 5 s, VT= 5 mIs, L0 = 20m, and l = 0.001 m. Thus, the velocity —fluctuation
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correlation time is t m[i L0 I VTI 4 —5s . The sum of the squared coefficients c, (see Sec.3) is numerically

proven to be equal to unity. Also, the normalized covariance K (Z, 9) =< V(z + Z, 9 + G)V(z, 9) > I < 172 > of the

spatio-temporal radial-velocity fluctuations V(z, 9) is shown to closely coincide with that given preliminarily (see

Fig.2). The realizations Vk (z) of the Doppler velocity profile are then extracted from {V (z, 9 )} as

Vk (z) = V[z,(k— l)qL\9 I , where q is an integer, and qA9 is the interval between the adjacent laser shots. Taking into

account in Eq. (1 1) the profiles chosen of f(9 ) , c1(z) and Vm(Z) as well as the realizations built Wk of w, and

"k (z) of i; (z) , we obtain the corresponding signal realizations 'k (t = 2zI c) at N successive laser shots. Given

'k (t = 2z/c) , the signal autocovariance estimate Côv(t, 8) is obtained on the basis of Eq.(3). An estimate (z) of the

profile 1(z) is further obtained by deconvolution techniques [6]. At last, the recovered Doppler velocity profiles
V(z) are obtained on the basis of the retrieval algorithms [Eqs.(5) and (6)] described in Sec.2. Let us note that, to avoid

the necessity of too large number of laser shots to average the small-scale signal fluctuations, the estimates Côv(t, 9),

t(z) and Vr (z) are filtered by a monotone smooth sharp-cutoff digital filter with 79 -wide window [7,8] that is
much narrower than the variation scale of V (z).
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The short-term (T<'(t,), middle-term (T-t), and long-term (7>t) lidar measurement procedures are simulated by
appropriate choice of the interval qA8 (see above). So, we have simulated, respectively, N = 300, 200, and 140 laser
shots produced within measurement intervals T = 1 .2 s, 4 s, and 280 s. The corresponding restored Doppler velocity
profiles V,(z) are shown together and compared, in Figs.3a, 3b, and 3c, with the arithmetic-mean profile Va (z) =

N1 Vk (z) , the ensemble-mean profile Vm(Z) (V(z)) ,and the profile (z) at only one (say the first) laser shot. As

it is seen in the figures, the results from the simulations confirm the previsions about the character of the recovered
profiles. So, in all the cases the profile J'2(z) closely fits Va(Z) [see Eq.(8)]. Also, in the case of short-term

measurement (Fig.3a) the profile k(z) , being in general different from Vm (z) , is near each profile Vk(z) .At a middle-

term measurement procedure (Fig.3b) the profile 1. (z) may differ from both 1/rn (z) and 1/k (z). At last, at a long-term

measurement (Fig.3c) the restored profile 1',. (z) may differ from Vk (z), but nearly approximates 1rn (z) because,

according to the law of averages, Va (z) ['-S 1".(z)] should tend to Vrn(Z) when N> T / t >> 1.

Fig. 1. Models of the maximum-resolved signal power profile
(z) and the pulse shape f(19) (inset) used in the simulations.
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Fig.2. Velocity-fluctuation normalized autocovariance: model
(solid curves) and its reproduction by simulations (dashed curves).
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5.CONCLUSION

Fig.3. Comparison of restored Doppler velocity profiles
J'. (z) (solid curves) with the ensemble-mean profiles

Vm (z) (dotted curves), the arithmetic-mean profiles

Va (z) (dashed curves) and the instantaneous profile V (z)

(dashed-dotted curve, a) in the cases of short-term (a),
middle-term (b) and long-term (c) measurement procedures.

The statistical modeling and the simulations performed in the work confirm the physical interpretation [3] and the
analytical conclusions [4] concerning the character of the Doppler velocity profiles recovered on the basis of an analysis
of the autocovariance of the coherent Doppler lidar signal. That is, a short-term, long-term, or middle-term measurement
procedure allows one to determine, respectively, a near instantaneous, the ensemble-mean, or the arithmetic-mean
Doppler velocity profile. Also, the results from the simulations illustrate the adequacy and the efficiency of the
developed statistical model of the turbulent radial-velocity fluctuations.
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