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Abstract

Taking into account the sensing-pulse frequency chirp, we have derived generalized algorithms for recovering the

non-uniform Doppler-velocity coherent-lidar profiles within the lidar resolution interval conditioned by the pulse

length. The laser pulses are assumed to have an exponentially shaped form. The performance and the efficiency of the

algorithms obtained are studied and illustrated by computer simulations. It is shown that in the presence of arbitrary, in

form and magnitude, but known regular frequency chirp, at some reasonable number of signal realizations and ap-

propriate data processing to suppress the noise effects, the Doppler-velocity profiles can be determined accurately with

considerably shorter resolution scale compared with the pulse length.
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1. Introduction

Pulsed coherent Doppler lidars are of considerable contemporary interest as an effective tool for con-

tactless remote sensing of atmospheric wind. The laser sources that are most frequently used in this lidars
operate at wavelengths k of 10:6 lm (CO2 lasers [1–4]) and 2 or 2:1 lm (some solid-state lasers [4–6]).

There are at least two approaches for improving the range resolution of pulsed coherent Doppler lidars.

Such a first approach is based on the conception that the minimum achievable range resolution cell is of the

order of the sensing laser pulse length (see, e.g. [1,7]). On the other hand, the laser pulse length is recip-

rocally related with an uncertainty in the determination of the Doppler velocity [8]. Thus, in this case, the
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range resolution cell and the Doppler-velocity uncertainty are reciprocally related. But so far as their

product is proportional to the wavelength of the laser radiation [8], one can improve the range resolution

without lowering the velocity sensitivity, by using shorter sensing pulses of shorter-wavelength laser ra-

diation. Such is the case of using laser pulses with wavelength k ¼ 2 lm instead of five times longer pulses
with k ¼ 10:6 lm.
Another approach is to develop inverse mathematical techniques (algorithms) for retrieving the

Doppler-velocity profiles with considerably shorter resolution cell compared with the pulse length. Based

on the analysis of the complex heterodyne signal autocovariance, we have developed recently such tech-

niques concerning the cases of rectangular [9] and exponentially shaped [10] laser pulses. The results ob-

tained in [9,10] are strictly valid under the condition that the effect of the frequency chirp in the sensing laser

pulses is negligible. We consider as chirp the regular (mean) intrapulse frequency deviation that is repro-

ducible from pulse to pulse. The random (stationary) frequency fluctuations have been considered formerly

[10]. In many cases (see, e.g. [1,6]) the regular and random frequency deviations are so small that their

neglect would not lead to noticeable error in the determination of the Doppler-velocity profiles. That is, the
error would be much less for instance than one meter per second. In other cases the frequency deviations

can have large values corresponding to seeming velocity variations of many meters per second [1,11–15].

Such variations exceed the mean retrieval error caused for instance by turbulent velocity fluctuations [10].

Then one should take into account the influence of the frequency deviations on the accuracy of the

Doppler-velocity profiles obtained on the basis of various Doppler-velocity estimators.

Although the chirp effect is apparently more important in the CO2 coherent Doppler lidars,

according to the available literature data [11–15], it may also be noticeable in coherent lidars with solid-

state laser transmitters [16]. In any case, one should estimate the error in the determination of the
Doppler-velocity profiles caused by the neglect of the frequency chirp in the corresponding velocity

estimation techniques (estimators, algorithms). When the error has unacceptable large value one should

modify the known algorithms in such a way that to take into account and eliminate the chirp effect on

the final results. For instance, in [17] it is shown how to remove a typical chirp-due bias error in the

Doppler-velocity profiles obtained on the basis of CO2 coherent lidar data by using PP frequency

estimator [18,19].

A purpose of the present work is to investigate (Section 4) the character of the error due to the neglect of

the frequency chirp, when recovering high-resolution Doppler-velocity profiles by using the inverse algo-
rithms developed in [10]. The main purpose of the work is to develop new more general inverse techniques

for retrieving high-resolution Doppler-velocity profiles (Section 3), taking into account (and thus correcting

for) the frequency chirp in the coherent-lidar sensing pulses. The pulse power shape and the temporal

behaviour of the regular frequency deviation are supposed to be known. They can, in principle, be de-

termined experimentally [11–15] or predicted theoretically [13,14]. Here we consider the case of exponen-

tially shaped sensing laser pulses that can be good approximations of real asymmetric laser pulses generated

by various solid-state and CO2 lasers (see, e.g. [10,11,20–25].

The new algorithms are obtained on the basis of an analysis of a general expression of the complex
heterodyne signal autocovariance that is given in Section 2. The algorithm performance and efficiency are

studied and illustrated by computer simulations in Section 4.

2. Complex heterodyne signal autocovariance

The aerosol single-scattering complex heterodyne lidar signal IðtÞ ¼ JðtÞ þ iQðtÞ is in general a non-
stationary random process whose autocovariance Covðt; hÞ ¼ hI�ðtÞIðt þ hÞi depends not only on the time
shift h but on the moment t as well; JðtÞ and QðtÞ are inphase and quadrature components, respectively,
ensemble average is designated by h�i, i is imaginary unity, and the superscript � denotes complex
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conjugation. For a positive time shift hP 0 we have obtained in [10], the following expression of the

autocovariance function:

Covðt; hÞ ¼
Z ct=2

z0

dz0fmðt 
 2z0=cÞfmðt þ h 
 2z0=cÞgð# ¼ t 
 2z0=c; hÞUðz0Þ

� expfi½xmðz0Þh þ dxch½ðt 
 2z0=cÞvðz0Þ�hvðz0Þ�gf½hvðz0Þ�n½hvðz0Þ�cðz0; 2x0h=cÞ; ð1Þ

where z0 is the upper limit of the lidar dead (blind) zone (the radiation backscattered from this zone is not
detectable); z ¼ ct=2 is the position (along the lidar line of sight) of the pulse front corresponding to the
moment of detection t (after the pulse emission), c is the speed of light; z0 is a current longitudinal coor-
dinate along the line of sight; fmð#Þ is the ensemble-mean shape of the pulse envelope f0ð#Þ ¼ fmð#Þ
½1þ gð#Þ�, gð#Þ ¼ ½f0ð#Þ 
 fmð#Þ�=f0ð#Þ describes the relative pulse-shape fluctuations, hgð#Þi ¼ 0, and,
respectively, hf0ð#Þi ¼ fmð#Þ, hf0ð#Þf0ð#þ hÞi ¼ fmð#Þfmð#þ hÞgð#; hÞ, gð#; hÞ ¼ 1þ Covgð#; hÞ, and

Covgð#; hÞ ¼ hgð#Þgð#þ hÞi is the autocovariance of gð#Þ; Uðz0Þ is proportional to the mean short-pulse
(d-pulse) signal power profile [9,10] and characterizes the contribution to the mean signal power of unitary
‘‘scattering length’’ along the line of sight; xmðz0Þ ¼ x0vðz0Þ 
 xh is the intermediate frequency, x0 is the

basic frequency of the sensing pulsed radiation, xh is the optical heterodyne frequency, vðz0Þ ¼ 1
 2vðz0Þ=c,
vðz0Þ is the ensemble-mean profile of the radial (Doppler) velocity of the aerosol scatterers; dxchð#Þ is the
regular frequency deviation (chirp), with respect to x0, in the sensing laser pulses; and f½hvðz0Þ� ¼
hexp½idxrhvðz0Þ�i, n½hvðz0Þ� ¼ hexp½iuIrhvðz0Þ�i, and cðz0; 2x0h=cÞ ¼ hexp½i2x0h~vvðz0Þ=c�i are real characteristic
functions supposed to characterize, respectively, symmetrically distributed zero-mean frequency fluctua-

tions dxrð#Þ and (differentiated realizations uIrð#Þ of) phase fluctuations urð#Þ in the sensing laser pulse, and
radial velocity fluctuations ~vvðz0Þ along the line of sight. The random functions dxrð#Þ and urð#Þ [uIrð#Þ] are
considered as statistically stationary and independent of each other and, certainly, of the velocity fluctu-

ations ~vvðz0Þ. When deriving Eq. (1) we have supposed [10] that the phase terms uchð#Þ ¼
R #

0
dxchðt0Þdt0

(phase increment due to the chirp), uxrð#Þ ¼
R #

0
dxrðt0Þdt0 (phase increment due to the random frequency

fluctuations), and urð#Þ (other possible phase fluctuations) change slowly enough within time intervals T of
the order of h so that uð#þ T Þ 
 uð#Þ ffi uIð#ÞT ; here the superscript I denotes differentiation with respect
to #.
Let us also briefly consider the question about the formation of the characteristic function

cðz0; 2x0h=cÞ in Eq. (1) in the case of turbulent velocity fluctuations ~vvðz0Þ. In practice, the signal au-
tocovariance estimate is obtained by averaging over some number N of conjecturally independent signal
realizations obtained (by N laser shots) for an accumulation period (observation time) Ta. Within Ta the
fast varying [small temporal (and spatial) scale] turbulent velocity fluctuations are averaged (together

with the speckle and other random phase fluctuations), taking part in this way in the formation of the

corresponding characteristic function cðz0; 2x0h=cÞ in Eq. (1). The small-scale fluctuations are weak as
compared with the slowly varying [large temporal (and spatial) scale] velocity fluctuations that are not

averaged and take part in the formation of a mean for the period Ta, but range-resolved velocity profile
vðz0Þ [Eq. (1)]. For a long enough observation time Ta (e.g., of the order of minutes) that exceeds es-
sentially the mean correlation time scv of the fluctuation process (Ta � scv) one will obtain a long-term
average velocity profile vðz0Þ and a full-variance characteristic function cðz0; 2x0h=cÞ resulting from av-

eraging all the velocity fluctuations. Under stationary conditions, the profile vðz0Þ obtained in this case is
an estimate of the parent population mean velocity profile. Under non-stationary conditions, when there

are appreciable trends, the long-term averaging is characterized by low temporal resolution. When the

value of Ta is small (e.g., of the order of a few seconds) in comparison with scv (Ta � scv) one will obtain
a near instantaneous (short-term average) velocity profile vðz0Þ and a small-variance characteristic
function cðz0; 2x0h=cÞ resulting from the averaged feeble velocity fluctuations whose correlation scales are
less than Ta.
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At h ¼ 0 from Eq. (1) we obtain the following expression of the mean signal power profile

P ðt ¼ 2z=cÞ ¼ hjIðt ¼ 2z=cÞj2i:

P ðt ¼ 2z=cÞ ¼
Z ct=2

z0

f ðt 
 2z0=cÞUðz0Þdz0; ð2Þ

where f ð#Þ ¼ hf 20 ð#Þi ¼ f 2mð#Þgð#; h ¼ 0Þ ¼ Pimpð#Þ=Pp is a dimensionless shape describing the mean pulse
power shape Pimpð#Þ normalized to its peak value Pp. At known (experimentally determined) P ðtÞ and f ð#Þ,
the profile of Uðz0Þ can be recovered on the basis of Eq. (2) by using deconvolution techniques [26]. Eq. (2)
reveals the sense of Uðz0Þ as the contribution to the mean signal power of unitary ‘‘scattering length’’ along
the line of sight. When the pulse length is much less than the least variation scale of Uðz0Þ, instead of Eq. (2)
we obtain that P ðt ¼ 2z=cÞ ffi Pshðt ¼ 2z=cÞ ¼ ðcsp=2ÞUðz ¼ ct=2Þ where sp ¼

R1
0
f ð#Þd# is an effective pulse

duration, and lp ¼ csp is the corresponding effective pulse length. The profile of Pshðt ¼ 2z=cÞ [that is ob-
viously proportional to UðzÞ] is mentioned after Eq. (1), for brevity, as the ‘‘mean short-pulse (d-pulse)
signal power profile’’ because it is obtainable at short-enough (d-like) laser pulses.
We shall consider in this work ‘‘exponentially shaped’’ sensing laser pulses whose mean shape fmð#Þ is

given by

fmð#Þ ¼ hf0ð#Þi ¼ ðe#=sÞ expð
#=sÞ; ð3Þ
where s is a time constant determining the pulse duration. We shall also suppose that the relative pulse-
shape fluctuations gð#Þ are stationary so that the integrand factor gð#; hÞ in Eq. (1) depends only on h, i.e.,
gð#; hÞ � gðhÞ ½Covgð#; hÞ � CovgðhÞ�. In addition, since vðzÞ � c and dxch � x0, we can assume that the

factor vðz0Þ explicitly present in Eq. (1) is equal to unity. Under the above conditions and the assumption
that the frequency chirp is negligibly small, on the basis of Eq. (1) we have obtained in [10] two algorithms

for retrieving the profile of xmðz ¼ ct=2Þ [and, respectively, vðz ¼ ct=2Þ] with a resolution cell that can be
theoretically of the order of the spatial (temporal) sampling interval Dz (Dt ¼ 2Dz=c). The procedure of
deriving the retrieval algorithms begins with differentiating Eq. (1) with respect to t, includes two more
successive differentiations (with respect to t again) and some algebraic transformations, and leads as a final
result to an expression of the function

Cðt; hÞ ¼ CovIIIttt ðt; hÞ þ ð6=sÞCovIItt ðt; hÞ þ ð12=s2ÞCovIt ðt; hÞ þ ð8=s3ÞCovðt; hÞ; ð4Þ

where the symbol ‘‘t
I
’’ denotes differentiation with respect to t. The expression obtained of Cðt; hÞ [10] leads

in turn to the desired algorithms. The first one is given by the relation

xmðz ¼ ct=2Þ ¼ h
1 arctanfImCðt; hÞ=ReCðt; hÞg ð5Þ
and is valid when

ðxmÞIth
2=2� 1: ð6Þ

The second algorithm is given by the relation

xmðz ¼ ct=2Þ ¼ ½ImGðtÞ�=fUðz ¼ ct=2Þ½ce2gð0Þ=s2�g; ð7Þ
where GðtÞ ¼ CIhðt; h ¼ 0Þ is the first derivative of the function Cðt; hÞ with respect to h at h ¼ 0.

3. Retrieving high-resolution Doppler-velocity profiles, taking into account the frequency chirp

On the basis of an analysis of Eq. (1) we shall derive in this section some more general algorithms for
retrieving high-resolution Doppler-velocity profiles, taking into account the frequency chirp in the sensing

laser pulses. That is, the phase term dxch½ðt 
 2z0=cÞvðz0Þ�hvðz0Þ ffi dxchðt 
 2z0=cÞh in Eq. (1) will not be
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neglected, and the frequency deviation dxchð#Þ will be considered as a known function of # determined
experimentally [11–15] or predicted theoretically [13,14]. The characteristic functions f, n, and c in Eq. (1)
will be considered as real quantities corresponding to symmetric probability density distributions. We shall

also assume that the mean shape of the sensing pulses is given by Eq. (3), and the relative pulse-shape

fluctuations gð#Þ are stationary, i.e., gð#; hÞ � gðhÞ in Eq. (1).

3.1. Linear frequency chirp

Let us first show that Eqs. (5) and (7) [together with Eq. (4)] are easy adaptable to the particular case of a

linear frequency chirp. The regular frequency deviation dxchð#Þ in this case is a linear function of #, i.e.,
dxchð#Þ ¼ xch þ a#; ð8Þ

where xch is a constant frequency term, and a½seconds
2� is a constant chirp rate. The term xch leads

obviously [see Eq. (1)] to a shift (¼ xch) in the final result for xmðzÞ that can easily be corrected for.
Therefore we shall further suppose that xch ¼ 0 and consider only the modifications in relations (5) and (7)
due to the term a#. For a linear frequency chirp dxchð#Þ ¼ a# and exponentially shaped laser pulses [Eq.
(3)] the integrand factor fmðt 
 2z0=cÞfmðt þ h 
 2z0=cÞ expfi dxchðt 
 2z0=cÞhg in Eq. (1) [vðz0Þ ¼ 1] is equal
to ðe=sÞ2 expð
h=sÞðt 
 2z0=cÞðtþ h 
 2z0=cÞ expf
Qðt 
 2z0=cÞg, where Q ¼ 2=s 
 jah. Thus, the last con-
crete (explicit) form of the factor considered, as well as the whole Eq. (1), just corresponds to the case of no

chirp, where only the quantity 2=s multiplying ðt 
 2z0=cÞ in the integrand exponent is formally replaced by
Q. Then the high resolution profile of xmðzÞ [vðzÞ] can be retrieved again by using Eqs. (5) and (7), where
only function Cðt; hÞ should be modified as

Cðt; hÞ ¼ CovIIIttt ðt; hÞ þ 3QCov
II
tt ðt; hÞ þ 3Q2Cov

I
t ðt; hÞ þ Q3Covðt; hÞ: ð40 Þ

Let us also note that the additional condition ah2=2� 1 should be satisfied for Eq. (5) to be valid. This

condition is due to the above-indicated substitution 2=s ! 2=s 
 iah.

3.2. Arbitrary frequency chirp

As a main task to be solved, we shall derive a general retrieval algorithm that is valid for an arbitrary

frequency chirp. Under the above-described (Section 3) conditions, on the basis of Eq. (1) we obtain the

following expression of the first derivative of Covðt; hÞ with respect to t:
CovItðt; hÞ ¼ KðhÞðJ1 þ J2Þ 
 ð2=sÞCovðt; hÞ; ð9Þ

where

KðhÞ ¼ ðe=sÞ2 expð
h=sÞfðhÞnðhÞgðhÞ;

J1 ¼
Z ct=2

0

dz0u1ðt; h; z0ÞEðt; h; z0ÞUðz0Þcðz0; 2x0h=cÞ;

J2 ¼ ih
Z ct=2

z0

dz0u2ðt; h; z0ÞEðt; h; z0ÞUðz0Þcðz0; 2x0h=cÞ½dxchðt 
 2z0=cÞ�It ;

u1ðt; h; z0Þ ¼ 2t 
 4z0=cþ h;

u2ðt; h; z0Þ ¼ ðt 
 2z0=cÞðt þ h 
 2z0=cÞ;
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Eðt; h; z0Þ ¼ expf
2ðt 
 2z0=cÞ=s þ i½xmðz0Þ þ dxchðt 
 2z0=cÞ�hg:

From Eq. (9), after relocating the term ð2=sÞCovðt; hÞ and differentiation with respect to t, we obtain the
relation

CovIItt ðt; hÞ þ ð2=sÞCovIt ðt; hÞ ¼ Y ðt; hÞ þ KðhÞðJ3 þ J4 þ J5Þ 
 ð2=sÞ½CovIt ðt; hÞ þ ð2=sÞCovðt; hÞ�; ð10Þ

where

Y ðt; hÞ ¼ ðch=2ÞKðhÞUðct=2Þcðct=2; 2x0h=cÞ expfih½xmðct=2Þ þ dxchð0Þ�g;

J3 ¼ 2
Z ct=2

z0

dz0Eðt; h; z0ÞUðz0Þcðz0; 2x0h=cÞ;

J4 ¼ 2ih
Z ct=2

0

dz0u1ðt; h; z0ÞEðt; h; z0ÞUðz0Þcðz0; 2x0h=cÞ½dxchðt 
 2z0=cÞ�It ;

J5 ¼ ih
Z ct=2

z0

dz0u2ðt; h; z0ÞEðt; h; z0ÞUðz0Þcðz0; 2x0h=cÞu3ðt; h; z0Þ;

u3ðt; h; z0Þ ¼ ½dxchðt 
 2z0=cÞ�IItt þ ihf½dxchðt 
 2z0=cÞ�Itg
2
:

Further we move the term ð2=sÞ½CovIt ðt; hÞ þ ð2=sÞCovðt; hÞ� into the left-hand side of Eq. (10) and differ-
entiate with respect to t again. Thus, we obtain

CovIIIttt ðt; hÞ þ ð4=sÞCovIItt ðt; hÞ þ ð4=s2ÞCovIt ðt; hÞ ¼ Y It ðt; hÞ þ ð2=hÞ½1þ h=s þ ih2dxI
chðt 
 2z0=c ¼ 0Þ�

� Y ðt; hÞ þ KðhÞðJ6 þ J7 þ J8Þ 
 ð2=sÞ
� ½CovIItt ðt; hÞ þ ð4=sÞCovIt ðt; hÞ þ ð4=s2ÞCovðt; hÞ�;

that is,

Cðt; hÞ ¼ CovIIIttt ðt; hÞ þ ð6=sÞCovIItt ðt; hÞ þ ð12=s2ÞCovIt ðt; hÞ þ ð8=s3ÞCovðt; hÞ
¼ Y It ðt; hÞ þ ð2=hÞ½1þ h=s þ ih2dxI

chðt 
 2z0=c ¼ 0Þ�Y ðt; hÞ þ KðhÞðJ6 þ J7 þ J8Þ; ð11Þ
where

J6 ¼ 6ih
Z ct=2

z0

dz0Eðt; h; z0ÞUðz0Þcðz0; 2x0h=cÞ½dxchðt 
 2z0=cÞ�It ;

J7 ¼ 3ih
Z ct=2

z0

dz0u1ðt; h; z0ÞEðt; h; z0ÞUðz0Þcðz0; 2x0h=cÞu3ðt; h; z0Þ;

J8 ¼ ih
Z ct=2

z0

dz0u2ðt; h; z0ÞEðt; h; z0ÞUðz0Þcðz0; 2x0h=cÞu4ðt; h; z0Þ;

u4ðt; h; z0Þ ¼ 3ih½dxchðt 
 2z0=cÞ�It ½dxchðt 
 2z0=cÞ�IItt þ ½dxchðt 
 2z0=cÞ�IIIttt 
 h2f½dxchðt 
 2z0=cÞ�Itg
3
;

and dxI
chðt 
 2z0=c ¼ 0Þ is the derivative ½dxchðt 
 2z0=cÞ�It at z0 ¼ ct=2.
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On the basis of Eq. (11) we obtain the following expression of the imaginary part of the first derivative

GðtÞ ¼ CIhðt; h ¼ 0Þ of the function Cðt; hÞ with respect to h at h ¼ 0:
ImGðtÞ ¼ ðce2=s2Þgð0ÞUðz ¼ ct=2Þ½xmðz ¼ ct=2Þ þ dxchð0Þ� þ RðtÞ; ð12Þ

where

RðtÞ ¼ ðe=sÞ2gð0Þ
Z ct=2

z0

dz0½ðt 
 2z0=cÞ2dxchðt 
 2z0=cÞ�IIIttt exp½
2ðt 
 2z0=cÞ=s�Uðz0Þ:

In turn, Eq. (12) leads to the relation

xmðz ¼ ct=2Þ ¼ ½ImGðtÞ 
 RðtÞ�=fUðz ¼ ct=2Þ½ce2gð0Þ=s2�g 
 dxchð0Þ; ð13Þ

which is a general algorithm we had to develop for retrieving the mean Doppler-velocity profile vðz ¼ ct=2Þ
[xmðz ¼ ct=2Þ] with a resolution interval of the order of Dz (Dt). The algorithm obtained [Eq. (13)] differs
formally from Eq. (7) in the appearance of the terms RðtÞ and dxchð0Þ accounting for the frequency chirp
dxchð#Þ considered as arbitrary in form but differentiable function of #.

4. Simulations

In this section we represent some results from simulations we have conducted to investigate and illustrate

to what extent it is important to take into account the frequency chirp in the sensing laser pulses by using
the developed above inverse techniques (algorithms) for retrieving high-resolution Doppler-velocity pro-

files. The wavelength of the sensing radiation k ¼ 2pc=x0 is supposed to be k ¼ 10:6 lm (CO2 lidars) or

k ¼ 2 lm (solid-state lidars). The case of a stable reproducible pulse shape is considered, when gð#Þ � 0,
and f ð#Þ ¼ f 20 ð#Þ ¼ ðe2#2=s2Þ expð
2#=sÞ.
The realizations of the complex heterodyne signal IðtÞ ¼ JðtÞ þ iQðtÞ are simulated (as in [9,10,27]) by

taking into account the fact that because of the incoherent character of the aerosol backscattering process

the polarization components of the backscattered radiation can be considered as circular complex Gaussian

random quantities. Since our purpose is to reveal mainly the chirp influence on the algorithm performance,
we have not simulated random frequency (dxr) and phase (ur) fluctuations and random radial-velocity

fluctuations ~vvðzÞ. In other words, the case is implied when the effect of the frequency chirp is more essential
than the effect of the random phase fluctuations. We have not simulated either additive random noise. The

influence of these (above-mentioned) random factors on the accuracy of the retrieved Doppler-velocity

profiles is investigated by simulations in [10]. In the present work only the speckle noise is naturally present.

This means that the actual single-shot signal-to-noise ratio (SNR) is equal to unity [28–31]. The situation is

nearly the same (SNR <� 1) when the signal power exceeds the power of the shot noise and other additive
noise, that is, when the additive noise exists, but the speckle noise is prevailing. The contemporary high
pulse repetition rate laser transmitters (some of them cited below) for coherent lidars are designed in such a

way that to ensure powerful enough signals, in the above sense, from distances of several kilometers within

the planetary boundary layer. To enlarge the effective SNR one should certainly use some averaging and

filtering procedures.

The covariance estimates are obtained according to the relation

dCovCovðt; h ¼ mDtÞ ¼ N
1
XN
k¼1

I�k ðtÞIkðt þ mDtÞ; ð14Þ

where t ¼ lDt ¼ 2lDz=c (l ¼ 0; 1; 2; . . .), and N is the number of realizations employed IkðtÞ. At m ¼ 0, Eq.
(14) provides the estimate P̂P ðtÞ ¼ dCovCovðt; h ¼ 0Þ of the signal power profile P ðtÞ ¼ Covðt; h ¼ 0Þ. After P̂P ðtÞ is
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known, we obtain by deconvolution [26], on the basis of Eq. (2), the estimate ÛUðz ¼ ct=2Þ of the short-pulse
signal power profile Uðz ¼ ct=2Þ.
At an arbitrary high number of signal realizations (N ! 1), under stationary conditions, the random

error (caused by various random factors) in the restored Doppler-velocity profiles will be negligibly small.

If, in addition, some possible bias errors are also compensated for (see, e.g. [10]), one would achieve ac-
curately restored profiles with a range resolution cell q that is of the order of the sampling (and data
processing) interval Dz. However, even if high pulse repetition rate lasers are used [see, e.g. [11] and [12]), an
enormously high value of N would require a too long data accumulation time exceeding the period of

stationarity of the atmospheric conditions. Therefore, some type of filtering is necessary to suppress the

effect of the random factors and thus to ensure a satisfactory quality of the restored profiles at a reasonable

number N of signal realizations (respectively, laser pulses, laser shots). However, the filtering procedure

lowers the range resolution. As it is shown in Appendix A, the resolution cell q will be already of the order
of the width W of the window of the filter employed. To retain a satisfactory range resolution the value of
W should be less than the least variation scale (along the line of sight) Kv of the mean radial velocity vðzÞ.
Then the restored velocity profiles vrðzÞ are minimally distorted with respect to the true ones, vðzÞ. In this
case the variability of UðzÞ, reflecting the backscatter gradients along the line of sight, has no influence on
the retrieval resolution. When W exceeds Kv the small-scale velocity variations (whose scales are less than

W ) will be unresolved or strongly distorted in the restored profiles. The small-scale velocity variations may
be additionally distorted because of strong local backscatter gradients whose scales KU are less than W . We
have used for the simulations a smooth monotone sharp-cutoff digital filter [32] with p=ð9DtÞ-wide pass-
band for smoothing the estimates dCovCovðt; hÞ, dCovCovðt; 0Þ, ÛUðz ¼ ct=2Þ, and the restored profiles vrðz ¼ ct=2Þ.
The corresponding range resolution cell is q � W ¼ 9cDt=2 ¼ 9Dz (in the range domain).

4.1. Chirp effect in CO2 lidars

As we mentioned in Section 1, the chirp effect in CO2 lidars (k ¼ 10:6 lm) is more important than in
solid-state lidars (k ¼ 2 lm). Therefore we shall begin with (and mainly investigate) the case of CO2 lidars.
The model of the mean Doppler-velocity profile vðzÞ considered in this case is shown in Fig. 1(a). It is
chosen to be like a sequence of wind vortices having relatively small spatial size and sharp velocity vari-
ations; the velocity variations scale Kv is about 150 m. The backscattering variability is modelled through

the profile of UðzÞ that is given in Fig. 1(b); the variation scale KU of the profile UðzÞ is about 75 m. The
pulse power shape f ð#Þ employed in the simulations is shown in Fig. 2 (solid curve). The value of s is

Fig. 1. Models of (a) the mean Doppler-velocity profile vðzÞ and (b) the mean short-pulse signal power profile UðzÞ used in the
simulations for k ¼ 10:6 lm.
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supposed to be 200 ns that corresponds to a pulse length lp �300 m (pulse duration sp � 1 ls), which
exceeds the variation scales Kv and KU. The sampling interval Dt ¼ 2Dz=c and the lidar blind zone upper
limit z0 are chosen to be, respectively, Dt ¼ 20 ns (Dz ¼ 3 m) and z0 ¼ 300 m.
Let us first consider the results from simulating the algorithm performance in the case of an increasing

linear frequency chirp dxchð#Þ ¼ a# ¼ 2pa1#whose rate aða1Þmay have various values (Fig. 2, dashed lines).
The number of simulated signal realizations is N ¼ 300, and a smoothing of dCovCovðt; hÞ, dCovCovðt; 0Þ, ÛUðz ¼
ct=2Þ, and vrðz ¼ ct=2Þ is performed, as it is explained above, by use of a smooth monotone sharp-cutoff
digital filter [32] with 9Dz-wide window. Thus, a resolution cell q � 27 m is achieved that is much less than
the resolution cell qp ¼ lp=2 (�150 m) defined by the pulse length lp � 300 m. (Let us note meanwhile that a
resolution cell of the order of qp does not allow one to avoid sensible distortions when retrieving (e.g., by use
of pulse pair algorithm) velocity profile features having sizes of the same order or shorter.) The value of q is
also much less than Kv and KU. When the frequency chirp is taken into account and we use Eq. (13) or Eqs.

(5) or (7) [with Cðt; hÞ given by Eq. (40)] for retrieving vðzÞ, there is no noticeable bias error in the deter-
mination of vrðzÞ by simulations (see Fig. 3, solid curves). That is, the recovered Doppler-velocity profiles
vrðzÞ practically coincide with the original model vðzÞ. When algorithms (5) and (7) are employed without any
correction for the chirp [Cðt; hÞ is given by Eq. (4)], there arises a bias error dvrðzÞ ¼ vrðzÞ 
 vðzÞ in the

Fig. 2. Models of the pulse power shape for s ¼ 200 ns (solid curve) and the linear frequency chirp (dashed lines) with rates
a1 ¼ 0:3 MHz=ls (a), 1:5 MHz=ls (b), and 2 MHz=ls (c).

Fig. 3. Doppler-velocity profiles vrðzÞ restored by use of (a) algorithm (5) and (b) algorithm (7) with (solid curves) and without (dotted
curves) correction for the chirp in the case of increasing linear chirp with rate a1 ¼ 1:5 MHz=ls. The original profile vðzÞ (dashed curve)
is given for comparison; k ¼ 10:6 lm.
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determination of the Doppler-velocity profiles vrðzÞ that is noticeable for a1 > 0:3 MHz=ls. This error in-
creases with the increase of the chirp rate a1 and has the same (certainly negative) sign at every distance z
along the line of sight (see Fig. 3, dotted curves). In Fig. 4 we have represented the behaviour of the mean

bias error dvr ¼
R z2
z1
dzdvrðzÞ=ðz2 
 z1Þ, evaluated on the basis of results from simulations, as a function of the

chirp rate a1. The value of dvr is obtained by averaging dvrðzÞ over the range of the Doppler-velocity profile
under consideration, from z ¼ z1 ¼ 480 m to z ¼ z2 ¼ 1300 m. It is seen that when the chirp is accounted for,
there is no practically chirp-due error for all considered values of the chirp rate a1. In the case of no chirp
correction the module of the error jdvrj increases linearly with a1. The dependence of dvr on a1 can also be
evaluated independently (before simulations), taking into account that according to Eq. (13) the interme-

diate frequency bias dxmðzÞ ¼ Rðt ¼ 2z=cÞ=fUðzÞ½ce2gð0Þ= s2�g þ dxchð0Þ. It is seen in Fig. 4 that the latter
‘‘theoretical’’ dependence given by solid line is in accordance with the one obtained by simulations.

Further we have simulated the algorithm performance for a more complicated behaviour of the fre-

quency deviation dxchð#Þ ¼ 2pdmchð#Þ in the sensing laser pulse. Function dmchð#Þ is represented graphically
in Figs. 5(a)–(c) (insets), where it is seen to retain its form but to progressively lower its minimum. Such a
chirp form is like the one intrinsic to the TEA-CO2 laser pulses [13,14], but can be considered as arbitrarily

chosen in all other respects. The simulations of the retrieving procedure without any correction for the

chirp [by use of Eqs. (5) and (7) together with Eq. (4)] ascertain the appearance of a positive bias error in

the determination of the Doppler-velocity profiles (see Fig. 5) that corresponds to the wholly negative

Fig. 4. Mean bias error in the determination of vrðzÞ [restored by use of (a) algorithm (5) and (b) algorithm (7) without (circles) and
with (squares) chirp correction] as a function of chirp rate in the case of increasing linear frequency chirp; k ¼ 10:6 lm. The inde-
pendently evaluated mean bias error is given for comparison by solid curve.

Fig. 5. Doppler-velocity profiles vrðzÞ restored by use of algorithm (13) (solid curves) and algorithm (7) (dotted curves) in the case of
the frequency chirp given in insets, with chirp module maximum 0:3 MHz (a), 0:7 MHz (b), and 1 MHz (c). The original profile vðzÞ
(dashed curve) is given for comparison; k ¼ 10:6 lm.
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frequency chirp. The bias error becomes noticeable when the module of the maximum (negative) chirp

deviation exceeds 0.1 MHz, i.e., when the minimum of function dmchð#Þ is below )0.1 MHz. The mean error
dvr in this case increases again linearly considered as a function of the chirp module maximum (Fig. 6,

circles). The theoretical dependence evaluated independently on the basis of the expression of dxmðzÞ (see
Fig. 6, solid curve) has a similar behaviour. The simulations of the retrieving procedure based on Eq. (13),

that takes into account the frequency chirp, show that in this case the Doppler-velocity profiles are ac-
curately restored (see Figs. 5 and 6). Since the same number N of signal realizations and the same filtering
as above are employed the resolution cell achieved q is again of the order of 27 m.
The observation (data accumulation) time, which is necessary for accumulation of N realizations en-

suring an accurate retrieving of the Doppler-velocity profiles depends on the pulse repetition rate of the

laser transmitters employed. At a sufficiently high pulse repetition rate the observation time can be of the

order of seconds, which is an acceptable value in regard to the stationarity of the atmospheric conditions.

For instance, a CO2 laser with 300 Hz pulse repetition rate [11] allows one to accumulate N ¼ 300 signal
realizations for only one second. It is just the case considered in this subsection where the pulse duration
(pulse length) assumed is sp ¼ 1 ls (lp ¼ 300m). For longer sensing pulses the speckle-noise influence on the
algorithm performance is stronger [33] and the number N required of laser pulses is larger. So for 3–4 ls
long laser pulses a number of 1000–2000 pulses (realizations) is necessary to retrieve satisfactorily the

Doppler-velocity profiles. The corresponding data accumulation time (for 300 Hz pulse repetition rate) is

�3.3–6.7 s. For a pulse repetition rate of 1000 Hz (see, e.g. [34,35]) the observation time is already �1–2 s.
To illustrate the above-discussed conception (rather than definition) of the range resolution as condi-

tioned by the width W of the filter window, we have performed some additional simulations where we have

introduced a new model of UðzÞ (reflecting the line-of-sight backscatter distribution) and a new model of the
mean radial velocity profile vðzÞ. They are represented, respectively, in Fig. 7(a) (dotted curve) and Fig. 7(b)
(dashed curve). The chirp form assumed is given in Fig. 7(b) (inset). The new profile of UðzÞ involves some
strong inhomogeneities (strong backscatter gradients) whose scales are less than W (�27 m). The new
velocity profile contains a sequence of oscillations whose period decreases with the range along the line of

sight. At the same time the oscillation amplitude increases with the range. We have first simulated the case

when the model of UðzÞ having strong inhomogeneities is combined with the former relatively slowly
varying model of vðzÞ. The restored velocity profile in this case, vrðzÞ, is compared in Fig. 7(a) with vðzÞ. It is
seen that the two profiles, vrðzÞ and vðzÞ, are closely coincident, independently of the presence of strong
backscatter gradients. That is (see Appendix A), filtering leads only to replacing UðzÞ [in Eq. (1), and,

Fig. 6. Mean bias error in the determination of vrðzÞ [restored by use of algorithm (13) (squares) and algorithm (7) (circles)] as a

function of chirp module maximum in the case of the frequency chirp form represented in Fig. 5. The independently evaluated mean

bias error is given for comparison by solid curve.
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respectively, in Eq. (13)] with a smoothed profile UsmðzÞ without sensible changes in vðzÞ. Further we have
simulated the case where the fast-varying model of vðzÞ is combined with the former relatively smooth
model of UðzÞ (Fig. 1(b)). In this case, as it is seen in Fig. 7(b) (solid curve), the first velocity variations,
whose scale exceeds the filter window W , are accurately recovered. The following variations, whose scale is
comparable with W , are already apparently distorted, especially in their sharply varying (extremum) parts.
The final variations, whose scale is less than W , are unresolved. Similar results (Fig. 7(b), dotted curve) are
obtained from the final simulations where the profiles assumed of UðzÞ and vðzÞ have fast variable features.
The large-scale velocity variations (at near distances along the line of sight) are again accurately recovered

despite of the presence there of sharp backscatter gradients. The small-scale variations (at further distances)

are smoothed or unresolved, including some additional distortions around the location of strong back-

scatter gradients. As a whole, the results from the simulations confirm the conclusion (analytically deduced
in Appendix A) that the ability to accurately reconstruct (resolve) the Doppler-velocity profiles is deter-

mined mainly by the velocity variability (the velocity gradients) within the filter window.

4.2. Chirp effect in solid-state lidars

Although the chirp effect is not so essential for the contemporary solid-state lidars it is briefly considered

here for completeness. Besides, it might be important in some future, advantageous in many respects (e.g.,

powerful, high pulse repetition rate) solid-state laser transmitters. The wavelength of the sensing laser
radiation is assumed to be k ¼ 2 lm.
The simulations are performed at shorter laser pulses, s is 100 ns, and shorter sampling intervals,

Dt ¼ 10 ns (Dz ¼ 1:5 m), compared with the case of CO2 lidars. Correspondingly, the model of the
Doppler-velocity profile (Figs. 8(a) and (b), dashed curves) is shorter to scale. The model of the short-pulse

signal power profile [/ UðzÞ] is the same as above (Fig. 1(b)). The frequency chirp has the same form as for
k ¼ 10:6 lm but is compressed over a shorter temporal interval corresponding to the shorter laser pulse (see
Figs. 8(a) and (b), inset). The number of signal realizations is N ¼ 200 and the same filtering as above is
performed. Thus, taking into account the shorter sampling interval Dz ¼ 1:5 m, the resolution cell achieved
now is q � 13:5 m, which is much less than lp=2 (�75 m), Kv (�70 m), and KU (�75 m). At a pulse rep-
etition rate of, e.g., 200 Hz [4,6,36–38] the data accumulation time will be equal to 1 s. Let us note that 1

kHz pulse repetition rate is also achievable in the recent 2 lm solid-state lidars (see, e.g. [36–38]). The

simulations of the retrieving procedure accounting for the chirp [based on Eq. (13)] show that in this case

the Doppler-velocity profiles are accurately recovered (Figs. 8(a) and (b); solid curves). When the chirp is

Fig. 7. Doppler-velocity profiles vrðzÞ restored by use of algorithm (13) and compared with the original profiles vðzÞ (dashed curves) in
the case of (a) slow velocity and sharp backscatter variations and (b) sharp velocity variations combined with slow (solid curve) and

sharp (dotted curve) backscatter variations at a range-resolution cell q � 27 m; k ¼ 10:6 lm.
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not corrected for, the above-discussed positive bias arises. Certainly, this bias increases with the increase of

the chirp module maximum (see Figs. 8(a) and (b), dotted curves) with a lower rate compared with the case

of k ¼ 10:6 lm.
As a whole, the simulations conducted show that the algorithms derived in the paper [Eq. (13), and Eqs.

(5) and (7) with Cðt; hÞ given by Eq. (40)] allow one to retrieve accurately the Doppler-velocity profiles in the
presence of arbitrary frequency chirp in the sensing laser pulses, with a resolution cell that is much less than
the pulse length. Filtering the covariance estimate dCovCovðt; hÞ and the retrieved profile vrðzÞ [corresponding to
vðzÞ], as well as P̂PðtÞ and ÛUðz ¼ ct=2Þ, is a way to suppress the noise influence and thus to reduce the number
of signal realizations (laser shots) N required to ensure a prescribed accuracy. However, the effective width
of the filter window should have an optimum (not very large) value ensuring a satisfactory noise sup-

pression at an acceptable range resolution.

5. Conclusion

In the present work we have generalized some inverse mathematical techniques for improving the range

resolution of determining Doppler-velocity profiles on the basis of data from coherent heterodyne lidars

with exponentially shaped sensing laser pulses. The extended techniques are based on an analysis of the

complex heterodyne signal autocovariance and are valid for the general case when an arbitrary frequency

chirp is present in the sensing laser pulses. The ideal resolution cell can be in principle of the order of the

sampling intervals, at an arbitrary high number N of signal realizations ensuring effective noise suppression.
The real achievable resolution cell however is larger because of the necessity of lowering the number N
required, by filtering at least the speckle noise effects disturbing the final results. The resolution cell is then

of the order of the width of the window of the filters employed, but remains much less than the sensing laser

pulse length. The reduced value of N requires a shorter observation (data accumulation) time that can be of
the order of seconds when using powerful enough, high pulse repetition rate laser transmitters.
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Fig. 8. Doppler-velocity profiles vrðzÞ restored by use of algorithm (13) (solid curves) and algorithm (7) (dotted curves) in the case of
the frequency chirp given in insets with chirp module maximum ¼ 0:4 MHz (a) and 1:5 MHz (b). The original profile vðzÞ (dashed
curve) is given for comparison; k ¼ 2 lm.
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Appendix A. Estimating the influence of filtering on the velocity-profile retrieval resolution

For convenience, we shall describe the digital filtering process in the time (or range) domain by an

approximative continuous waveform Dð#Þ such that Dð#Þ ¼ Dð
#Þ > 0, lim#!�1 Dð#Þ ¼ 0, Dð# ¼ 0Þ ¼
Dmax is the only maximum of Dð#Þ, and

R1

1 Dð#Þd# ¼ 1; the dimension of Dð#Þ is ½time
1�. The effective

width w of the waveform (the filtering function) Dð#Þ in the time domain can be defined as

w ¼
R1

1 ½Dð#Þ=Dmax�d# ¼ D
1

max. The width (window) in the range domain is W ¼ cw=2 ¼ c=2Dmax. As a
consequence of filtering, the expression of the signal autocovariance [Eq. (1)] is modified in the following

way:

Covmðt; hÞ ¼
Z 1


1
Dðt 
 t0ÞCovðt0; hÞdt0; ðA:1Þ

where Covðt0; hÞ is the expression of the autocovariance given by Eq. (1). By using the substitution
t 
 2z0=c ¼ x, taking into account that by definition f ð#Þ � 0 for # � 0, and UðzÞ � 0 for z6 z0, Eq. (1) can
be rewritten in the form

Covðt0; hÞ ¼
Z 1


1
Hðx; zhÞQðt0 
 x; hÞdx; ðA:2Þ

where Hðx; hÞ ¼ BðhÞfmðxÞfmðxþ hÞ expfidxchðxÞhg, BðhÞ ¼ fðhÞnðhÞcð2x0h=cÞ, and Qðt0 
 x; hÞ ¼ U½cðt0 

xÞ=2� expfixm½cðt0 
 xÞ=2�hg. As it is mentioned in Section 2, we suppose that the factor vðz0Þ explicitly
present in Eq. (1) is equal to unity. Also it is assumed for simplicity that function cðz0; 2x0h=cÞ � cð2x0h=cÞ,
i.e., c does not depend on z0 at least within a pulse length. If we use in Eq. (A.1) the expression of Covðt0; hÞ
given by Eq. (A.2) we obtain

Covmðt; hÞ ¼
Z 1


1
Hðx; hÞQmðt 
 x; hÞdx; ðA:3Þ

where function

Qmðt 
 x; hÞ ¼
Z 1


1
Dðt 
 t0ÞQðt0 
 x; hÞdt0

¼
Z 1


1
DðyÞU½cðt 
 xþ yÞ=2� expfixm½cðt 
 xþ yÞ=2�hgdy ðA:4Þ

describes the effect of filtering. For more viewable analysis of this effect we shall consider the (realistic) case

when 2vðzÞx0h=c� 1. In this case the exponential integrand factor in Eq. (A.4) can be approximated as

exp½iðxmðzÞh� ffi exp½iðx0 
 xhÞh�½1
 i2vðzÞx0h=c�. Then, according to the law of the mean, Eq. (A.4) ac-
quires the form

Qmðt 
 x; hÞ ffi Usm½cðt 
 xÞ=2� expfixmd½cðt 
 xÞ=2�hg; ðA:5Þ

where functions Usm½z ¼ c#=2� ¼
R1

1 DðyÞU½cð#þ yÞ=2�dy ¼ U½z ¼ cð#þ y1Þ=2� and xmdðz ¼ c#=2Þ ¼ x0


xh 
 2x0vdðc#=2Þ=c ¼ x0 
 xh 
 2ðx0v½z ¼ cð#þ y2Þ=2�=c describe the distorted (smoothed), in general,
backscatter and velocity profiles respectively; the quantities y1 and y2 should mostly lie within the interval
½
w=2;w=2� and depend on #, that is, on the behaviour of UðzÞ and vðzÞ around z ¼ c#=2. The expression of
Eq. (A.5) shows [see also Eq. (A.3)] that due to filtering the expression of the autocovariance [Eq. (A.2) or

Eq. (1)] is modified in such a way that the smoothed profiles UsmðzÞ and xmdðzÞ take the places of the true
ones, UðzÞ and xmðzÞ respectively. Consequently, the retrieving procedure consists now in determining first
UsmðzÞ on the basis of Eq. (2) [obtainable from Eq. (1) at h ¼ 0], and then, in determining vdðzÞ on the basis
of Eq. (13). Let us note however that along range intervals having no sharp backscatter gradients on the

scales �W , the profiles UsmðzÞ and UðzÞ practically coincide because then Uðz ¼ c#=2Þ ffi U½z ¼ cð#þ y1Þ=2�.
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This means that the distribution of UðzÞ along the mentioned range intervals will be accurately recovered,
independently of the velocity gradients. Vice versa, along range intervals with slow velocity variations on

scales �W , the velocity profile vðzÞ will be accurately restored, independently of the backscatter gradients;
then vðz ¼ c#=2Þ ffi v½z ¼ cð#þ y2Þ=2�. When there are strong coincident backscatter and velocity gradients
along the line of sight, the recovered profiles will be additionally mutually distorted.
The general conclusion is that the possibility to accurately reconstruct the profile UðzÞ is determined by

the backscatter variability (the backscatter gradients) along the line of sight, independently of the velocity

gradients. The ability to accurately reconstruct the radial velocity profile vðzÞ is determined by the velocity
gradients along the line of sight, independently of the backscatter gradients.
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