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On the basis of an analysis of the autocovariance of the complex heterodyne signal, some novel algorithms are
derived and are investigated for use in determining, w ith high spatial resolution, D oppler-velocity coherent-
lidar profi les in the case of rectangular and rectangularlik e sensing laser pulses. T hese algorithms generaliz e
other k now n D oppler-velocity estimators for the more complex case of nonuniform scattering and D oppler-
velocity distribution w ithin the pulse length. A lgorithm performance and effi ciency are studied and are illus-
trated by computer simulations. I t is show n that the D oppler-velocity profi les can be determined w ith essen-
tially better resolution in comparison w ith the use of other k now n estimation approaches, but at the expense
of some increase in the number of statistical realiz ations (number of laser shots) req uired to reduce the
speck le-noise effect. T he minimum achievable resolution interval is show n to be much shorter than the pulse
length. © 2001 Optical S ociety of A merica

OCIS codes: 01 0.001 0, 28 0.3 3 4 0, 28 0.3 6 4 0, 01 0.3 6 4 0.

1 . I N T R O DU C T I O N

T he range (spatial) resolution R of pulsed coherent D op-
pler lidars is usually accepted to be of the order of the
pulse length.1 ,2 A t the same time, the range resolution
and the D oppler-velocity resolution (sensitivity) Dv are
reciprocally related, and their product is proportional to
the w avelength l of the laser radiation. T hat is, RDv

5 cl/4 , w here c is the speed of light. T hus, at a given
laser radiation w avelength, the pulse length should ex-
ceed some minimum value determined by the minimum
D oppler-velocity change to be resolved. S o the use of C O2

laser radiation (l 5 1 0.6 mm) has numerous
advantages3 ,4 and req uires a minimum pulse duration of
the order of microseconds (;5.3 ms) for achieving a
D oppler-velocity resolution of 1 m/s. T hen the corre-
sponding spatial resolution cell along the line of sight is
several hundred meters (;8 00 m) long. W ithin such a
long-resolution cell, the dispersion of the velocity and con-
centration of atmospheric particulate matter might be
q uite large, but the information about it is lost. T he use
of shorter pulses of shorter-w avelength radiation is a w ay
to improve the range resolution w ithout low ering the ve-
locity resolution, as in the case of employing laser pulses
w ith ;1 -ms duration (;1 50-m range resolution) and l

; 2 mm.5–7

A nother approach for improving the range resolution is
to develop inverse mathematical techniq ues for retrieving
D oppler-velocity profi les w ith a considerably shorter reso-
lution cell in comparison w ith the pulse length. R ecently
w e developed a similar approach concerning the lidar sig-
nal pow er profi le.8 ,9 I t is based on deconvolution tech-
niq ues for retrieving the so-called short-pulse (d-pulse)
pow er profi le on the basis of the measured pow er profi le

and the k now n pulse shape. In the present study w e
tak e a further step: T hat is, on the basis of an analysis of
the autocovariance of the complex heterodyne signal, w e
develop some novel inverse techniq ues for improving the
coherent-lidar spatial resolution w ith respect to the
D oppler-velocity profi le in the case of rectangular and
rectangularlik e sensing laser pulses. T he inverse algo-
rithms obtained generaliz e other k now n D oppler-velocity
estimators1 0,1 1 for the more complex case of nonuniform
scattering and D oppler-velocity distribution w ithin the
pulse length. A lthough the rectangular pulse shape is an
idealiz ation, it may be a good approximation of some real
laser pulses.1 2 M oreover, many features of the tech-
niq ues developed here, w hose feasibility is also tested and
illustrated below by computer simulations, should be in-
herent in similar techniq ues concerning the cases of more
general (or even arbitrary) pulse shapes.

2 . C O HE R E N T L IDA R R E T U R N S I G N A L

T he approach considered in this section for the descrip-
tion and modeling of coherent monostatic lidar signals
w as to our k now ledge, fi rst used in R efs. 1 3 and 1 4 and
w as substantiated in R ef. 1 5. I t is described here from a
somew hat different point of view in order to mak e clear
the follow ing analysis.

W e shall consider the sensing radiation as a seq uence
of q uasi-monochromatic laser pulses w ith basic (nominal)
freq uency vo , dimensionless temporal amplitude enve-
lope fo(q), and some regular freq uency deviation (chirp)
dvo(q) (udvou ! vo); q is a time variable, and fo(q) [ 0
for q , 0. T hen the expression describing the space–
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time amplitude and phase distribution of the sensing la-
ser radiation field Eo(r, t) may be written in the form

Eo~r, t ! 5 PA~r!f~t 2 z/c !expH jFvo~t 2 z/c !

1 E
0

t2z/c

dvo~t9!dt9 1 fo~t 2 z/c !G J , (1)

where fo(q) is a random function describing temporal
phase fl uctuations, j is imaginary unity, c is the speed of
light, t is the time interval after the pulse emission, P is
an in general complex vector characterizing the field po-
larization state, and A(r) is a space-dependent factor in
which, except for the aperture diffraction, the atmo-
spheric infl uence (extinction, turbulence) along the line of
sight is also taken into account (see, e.g., Ref. 16). The
line of sight coincides with the axis of the pulsed laser
beam. The vector coordinate r 5 $r, z% consists of a
transverse vector coordinate r and a longitudinal coordi-
nate z with respect to the line of sight, r [ 0 on the beam
axis, and z [ 0 at the transceiver aperture plane.

In the case of linear polarization of the incident laser
radiation, P [ e is a real unit vector. Then the field vec-
tor Ebi@rt , ri(t i8), t# of the radiation backscattered by one
(say, ith) aerosol particle, at the transceiver aperture
plane $rt% [ $rt , 0% and moment t after the pulse emis-
sion, is expressible in the form

Ebi@rt , ri~t i8!, t#

5 A@ri~t i8!#fo@t 2 2z i~t i8!/c#expH jFvo@t 2 2z i~t i8!/c#

1 E
0

t22zi~ti8!/c
dvo~t9!dt9 1 fo@t 2 2z i~t i8!/c#G J

3 ai@ri~t i8!#G'@rt ; ri~t i8!#, (2)

where ri(t8) [ $ri(t8), z i(t8)% is the vector coordinate of
the scattering particle at the corresponding earlier mo-
ment of interaction t i8 , ai is the scattering amplitude of
the particle,17 and G@rt ; ri# 5 G'@rt ; ri#exp(2jvo zi /c) is
the paraxially approximated Green function used for de-
scription of the backscattered-wave propagation in the at-
mosphere, taking into account in general the extinction
and turbulence effects.16 U nder single-scattering condi-
tions, the total backscattering field Eb(rt , t) is a superpo-
sition of the elementary wave fields backscattered by the
scatterers that contribute to the signal. That is,

Eb~rt , t ! 5 (
i

Ebi@ri , ri~t i8!, t#. (3)

The equivalent local-oscillator field vector Eh(rt , t) at the
transceiver aperture plane can be given in the form

Eh~rt , t ! 5 Ah~rt!exp$ j@vht 1 fh~t !#%, (4)

where Ah(rt) is the spatially dependent (complex ampli-
tude) factor, vh is the optical heterodyne frequency, and
fh(t) is a function describing phase fl uctuations.

When the photodetector collects all the local-oscillator
beam energy and all the backscattered radiation that is
covered by the receiving optical system, the complex pho-

tocurrent I(t) resulting from coherent heterodyne detec-
tion may be represented as18

I~t ! 5 J~t ! 1 jQ~t ! 5 KE Eb~rt , t ! • Eh
*~rt , t !drt ,

(5)

where K 5 2qe/\v, q is the photodetector (uniform)
quantum efficiently, e is the electron charge, \ 5 h/2p, h

is the P lanck constant, v 5 (vo 1 vh)/2, and superscript

* denotes complex conjugation. F unctions J(t) and Q(t)
are, respectively, in-phase and quadrature components of
I(t). On the basis of E qs. (2)–(5) we obtain the following
explicit expression of I(t):

I~t ! 5 K exp@ j~vo 2 vh!t 2 fh~t !#(
i

ai A@ri~t i8!#

3 fo@t 2 2z i~t i8!/c#expH jF22voz i~t i8!/c

1 E
0

t22zi~ti8!/c
dvo~t9!dt9 1 fo@t 2 2z i~t i8!/c#G J

• E Ah
*~rt!G'@rt ; ri~t i8!#drt . (6)

One can assume that when interacting with a propagat-
ing (sensing) laser pulse, each (ith) scatterer moves with
a constant radial velocity v i ! c. Then one can derive
the Doppler frequency shift on the basis of classical con-
siderations by representing z i(t i8) in the exponent in E q.
(6) as z i(t i8) 5 z io 1 v i(t 2 2z io /c), where z io is the lon-
gitudinal position of the particle when it is met by the
pulse front. The corresponding total vector coordinate is
rio [ $rio , z io%. F actors A and G' in E q. (6) also depend,
in general, on the particle motion as ri(t i8) 5 rio 1 vi(t
2 2z io /c). H ere vi 5 $vTi , v i% is the total vector of the
scatterer velocity with transverse component vTi . Ac-
cording to the results of Ref. 19 (see also Ref. 20), the in-
dicated dependence does not infl uence the temporal auto-
covariance of I(t) (which is of interest in what follows)
when the inequalities vTt/a ! 1 and pavTt/(lz) ! 1 are
satisfied; vT 5 uvTu, t is the pulse duration, and a is the
laser beam radius. Since these inequalities are usually
satisfied for coherent lidars, we shall neglect the effect of
the scatterer motion on A and G' . Thus E q. (6) may be
rewritten in the form

I~t ! 5 K exp@2jfh~t !#(
i

ai A~ri!fo~t 2 2z i /c !

3 exp~22jk D iz io!

3 exp( j$v m it 1 fch@~t 2 2z io /c !x i#

1 fo@~t 2 2z io /c !x i#%)

• E Ah
*~rt!G'@rt ; ri~t i8!#drt , (7)
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where vmi 5 vDi 2 vh is the intermediate frequency,
vDi 5 vox i is the Doppler-shifted frequency and kDi

5 vDi /c is the corresponding wave number, x i

5 1 2 2v i /c, and

fch@~t 2 2z io /c !x i# 5 E
0

~t22zio /c !xi

dvo~t9!dt9

is the phase increment due to the chirp. Consider the
semispace $z > 0% as consisting of plane slices with thick-
ness Dzo 5 cDto/2 that are perpendicular to the line of
sight. The slice thickness Dzo may in practice be equal to
the spatial sampling interval along the line of sight that
corresponds to a temporal sampling interval Dto . We
shall assume that Dzo is large compared with the wave-
length l 5 2pc/vo but that it is sufficiently small that
within each (lth) slice @(l 2 1)Dzo < z < lDzo# functions
fch , fo , A, G' , and certainly f do not change with z, and
the scattering particles have uniform radial velocity
v(z l). The scatterers contributing to the signal may be
numbered within every lth slice by an additional (except
l) index n (l, n 5 1, 2,...). So instead of Eq. (7) we can
write

I~t ! 5 K exp@2jfh~t !#(
l

fo~t 2 2z l /c !

3 exp( j$vmlt 1 fch@~t 2 2z l /c !x l#

1 fo@~t 2 2z l /c !x l#%)dA~z l!, (8)

where z l 5 lDzo , vml 5 vox l 2 vh , x l 5 1 2 2v(z l)/c,

dA~z l! 5 (
n

exp~22jkDlzoln!A~rln , z l!anl

• E Ah
*~rt!G'~rt; rln , z l!drt , (9)

rln and zoln are coordinates concerning the nth particle
inside the lth slice, anl is the corresponding scattering
amplitude, and kDl 5 vox l /c.

The aerosol scatterers have a quite random mutual dis-
position that conditions the incoherent character of the
scattering process. In this case, when the single back-
scattering prevails dA(z l) 5 dAr(z l) 1 jdAj(z l) is a circu-
lar complex Gaussian random quantity.21 The distribu-
tions of dAr(z l) and dAj(z l) are identical Gaussian ones
with zero mean value and variance D@dAr, j(z l)#

5 ^@dAr(z l)#2& 5 ^@dAj(z l)#2&, where ^ • & denotes en-
semble average. Also, dAr(z l) and dAj(z l) are statisti-
cally uncorrelated; i.e., ^dAr(z l)dAj(z l)& 5 0. B ecause of
the incoherent scattering, the contributions of different
slices to the heterodyne signal are also uncorrelated, and
correspondingly ^dA(z l)dA(z l1s)& 5 0 when s Þ 0 (s
5 61, 62,...). The value of dA(z l) can be represented
in the form

dA~z l! 5 Fo
1/2~z l!~Dzo!1/2w l , (10)

where

Fo~z l!~Dzo! 5 ^udA~z l!u
2& 5 D@dAr~z l!# 1 D@dAj~z l!#

is the variance of dA(z l), and w l 5 w 5 wr 1 jw j is a
complex Gaussian random quantity with zero mean value

^w& 5 ^wr& 5 ^w j& 5 0 and unitary variance Dw

5 ^uwu2& 5 ^wr
2& 1 ^wj

2& 5 1. Dwr 5 ^wr
2& 5 Dwj 5 ^wj

2&,
^wrw j& 5 0, and ^w lw l1s& 5 0 for s Þ 0. Taking into ac-
count the properties of dA(z l), the mean heterodyne sig-
nal power P(t) 5 ^uI(t)u2& is obtainable from Eq. (8) in the
form of the following sum,

P~t ! 5 (
l5l111

l2

f~t 2 2z l /c !F~z l!Dzo (11a)

or integral

P~t ! 5 E
f~t !

ct/2

f~t 2 2z/c !F~z !dz, (11b)

where f 5 f o
2 and F(z) 5 K2Fo(z). Thus the quantity

F(z) characterizes the contribution to the heterodyne sig-
nal power of unitary length along the line of sight at unit
f. The function f(q) 5 P imp(q)/Pp describes the pulse
power shape P imp(q) 5 *Eo(rt , q) • Eo

*(rt , q)drt nor-
malized to its peak value Pp 5 *A(rt)A*(rt)drt [see Eq.
(1) with r [ rt , t [ q, and P 5 e]. Correspondingly,
the pulse energy E imp 5 *0

`P imp(q)dq 5 Ppt, where t
5 *0

`f(q)dq is the effective pulse duration (lp 5 ct is
then the effective pulse length). According to Eqs. (11a)
and (11b), the value of F(z) [or F(z l)] is proportional to
the maximum-resolved (short-pulse) signal power profile
Pm(t 5 2z/c) 5 (ct/2)F(z) that is obtainable by suffi-
ciently short sensing pulses (physical d pulses). In the
case of a restricted pulse shape with actual duration ta

[when f(q P̄ @0, ta#) [ 0], in Eqs. (11a) and (11b) we
have l1 5 c(t 2 ta)/(2Dzo), l2 5 ct/(2Dzo), and f(t)
5 c(t 2 ta)/2. In the case of pulse shape with asymp-
totically falling tail, l1 5 zo /Dzo , l2 5 ct/(2Dzo), and
f(t) 5 zo . The range from z 5 0 to z 5 zo is the lidar
dead zone. The backscattered radiation from this zone is
not detectable because, for example, there is no overlap-
ping between the sensing laser beam and the field of view
of the receiving optical system.22

Taking into account Eq. (10), we can rewrite Eq. (8) in
the following forms:

I~t ! 5 exp@2jfh~t !# (
l5l111

l2

@ f~t 2 2z l /c !F~z l!Dzo#1/2

3 w~z l!exp$ jvmlt 1 jfch@~t 2 2z l /c !x l#

1 jfo@~t 2 2z l /c !x l#%, (12a)

or

I~t ! 5 exp@2jfh~t !#E
f~t !

ct/2

@ f~t 2 2z/c !#1/2

3 exp$ jvm~z !t 1 jfch@~t 2 2z/c !x~z !#

1 jfo@~t 2 2z/c !x~z !#%dA~z !, (12b)

where

^dA~z !dA~z8!& 5 F~z !d ~z 2 z8!dzdz8,

vm~z ! 5 vox~z ! 2 vh , x~z ! 5 1 2 2v~z !/c,

and fo is assumed to be stable within a slice.
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3. AUTOCOVARIANCE OF THE COHERENT
LIDAR RETURN SIGNAL

On the basis of Eq. (12a) or Eq. (12b), assuming that the
value of fh is stable within a pulse duration, we obtain
the following expression of the autocovariance function of
the coherent lidar signal:

Cov~t, u ! 5 ^I*~t !I~t 1 u !&

5 E
f~t1u !

ct/2

dzfo~t 2 2z/c !fo~t 1 u 2 2z/c !F~z !

3 exp$ j@vm~z !u 1 Dfch~t, u, z !#%

3 j~t, u, z !gz~2vou/c !, (13a)

where u > 0 is a time shift,

Dfch~t, u, z ! 5 fch@~t 2 2z/c !x~z !#

2 fch@~t 1 u 2 2z/c !x~z !#,

j~t, u, z ! 5 ^exp$ jfo@~t 2 2z/c !x~z !#

2 jfo@~t 1 u 2 2z/c !x~z !#%&,

and

gz~ y ! 5 E exp@2jyṽ~z !#p@ ṽ~z !#dṽ

is the characteristic function corresponding to the prob-
ability density distribution p@ ṽ(z)# of the radial velocity
fluctuations ṽ(z). Here we consider v(z) as ensemble-
mean value of the radial velocity and vr(z) 5 v(z)
1 ṽ(z) as a random realization of it. The influence of
the Brownian velocity dispersion is neglected, and all the
scattering particles in a slice are assumed to have uni-
form velocity fluctuations. If the regular chirp effect and
the phase fluctuations are negligible, at a t-long rectan-
gular pulse $ f(t) 5 1 for t P @0, t# and f(t) 5 0 else-
where% Eq. (13a) acquires the form

Cov~t, u ! 5 E
c~t1u2t !/2

ct/2

dzF~z !exp@ jvm~z !u#gz~2vou/c !.

(13b)

Cov(t, u) is a complex function with a real part

Re Cov~t, u ! 5 ^J~t !J~t 1 u !& 1 ^Q~t !Q~t 1 u !&

and an imaginary part

Im Cov~t, u ! 5 ^J~t !Q~t 1 u !& 2 ^J~t 1 u !Q~t !&.

At u 5 0, from Eq. (13b) we obtain

Cov~t, u ! 5 P~t ! 5 E
c~t2t !/2

ct/2

F~z !dz. (13c)

4 . RETRIEVING v(z) W ITH HIGH
RESOLUTION

On the basis of Eq. (13b) we first determine the expres-
sions of the covariance derivatives Covt8(t, u) (first deriva-
tive with respect to t) and Covtu9 (t, u 5 0) (second mixed
derivative with respect to t and u at u 5 0). Then we de-
rive from the expressions obtained [of Covt8(t, u) and
Covtu9 (t, u 5 0)] the following two relations for determi-
nation of vm(z) [respectively, v(z)] that are certainly
valid only for (informative) line-of-sight regions contain-
ing scatterers [where F(z 5 ct/2) Þ 0]:

vm~z 5 ct/2! 5 $F@c~t 2 t !/2#vm@c~t 2 t !/2#

1 Im@~2/c !Covtu9 ~t, u 5 0 !#%

3 @F~ct/2!#21, (14a)

where g 5 g@z 5 c(t 1 u 2 t)/2; 2vou/c# and the quan-
tities ct/2, @c(t 2 t)/2#, and @c(t 1 u 2 t)/2# are argu-
ments of the functions F and vm . It can be seen that the
second relation obtained [formula (14b)] depends explic-
itly on the velocity-fluctuation characteristic function
gz(2vou/c) [ g(z; 2vou/c), which is in addition assumed
here [only when deriving Eq. (14b)] to be a real function
corresponding to some symmetric probability density dis-
tribution p( ṽ) 5 p(2ṽ). The last assumption is in accor-
dance, for example, with the conception of locally homo-
geneous and isotropic (statistically) turbulent velocity
fluctuations (see, e.g., Ref. 23). Thus it turns out that
formula (14b) is effective only when vous/c ! 1 or z

2 zo , c(t 2 u)/2, where s 5 ^ṽ2&1/2 is the root-mean-
square value of the velocity fluctuations. In the latter
case

vm~z 5 ct/2! 5 u21 arctan@Im Covt8~t, u !/Re Covt8~t, u !#,

(14c)

which means that at sufficiently long sensing pulses or li-
dar dead zone @0, zo#, one could determine vm at long dis-
tances z without any prior (a priori) information about
gz(2vou/c).

In the cases when F(z) and vm(z) are practically con-
stant within every ct/2-long spatial interval, Eq. (13b)
leads to the algorithms

vm~z 5 ct/2! 5 @Im Covu8~t, u 5 0 !#/Cov~t, u 5 0 !, (15a)

vm~z 5 ct/2! 5 u21 arctan@Im Cov~t, u !/Re Cov~t, u !#,
(15b)

where the first one has been investigated by us formerly10

and the second one is the well-known pulse-pair (PP)
algorithm.11 Thus, formulas (14a)–(14c) generalize the
known algorithms (15a) and (15b) for the more complex
case of nonuniform distributions of F(z) and vm(z)
within the pulse length.

The resolution step achievable by algorithms (14a)–
(14c) may be considerably shorter than ct/2 and even of

vm~z 5 ct/2! 5 u21
3 arctanX~2/c !Im Covt8~t, u ! 1 F@c~t 1 u 2 t !/2#g sin$vm@c~t 1 u 2 t !/2#u%

~2/c !Re Covt8~t, u ! 1 F@c~t 1 u 2 t !/2#g cos$vm@c~t 1 u 2 t !/2#u%
C, (14b)
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the order of the sampling interval. In this case Cov(t, u)
is determined by a ‘‘true’’ ensemble averaging over a suf-
ficiently large number of laser shots to suppress the noise
effects (see below in Section 5). In this way the signal
power profile P(t) is also determined because P(t)
5 Cov(t, u 5 0). The short-pulse signal power profile
F(z 5 ct/2) is then obtained (by the deconvolution
technique8) as a solution of Eq. (13c). The PP algorithm
makes use in practice of a temporal averaging (along the
line of sight) on the basis of one realization (or some rela-
tively small number of realizations) of the random process
I(t) assumed to be the locally stationary and ergodic one.
This allows one to achieve a fast result but lowers the
spatial resolution because the resolution cell becomes
longer than ct/2.

5. SIMULATIONS

The algorithm performance has been simulated by use of
various distributions of the radial velocity v(z) and the
mean signal power } F(z). Below we present results
for two models of v(z). The first model is (see also Fig. 1)

v~z ! 5 v~z 2 zo!

5 v1~z !sin$4p~z 2 zo!/@q1l 1 q2~z 2 zo!#% 1 vo ,

(16)

where

v1~z ! 5 q3~z 2 zo!/~zs 2 zo! 1 q4 ,

q1 5 1.5 3 108, q2 5 0.3, q3 5 10 m/s,

q4 5 3 m/s, vo 5 3 m/s, zs 5 8700 m.

This model is like an alternating wind velocity profile and
is intended for investigating the algorithm performance
over relatively large ranges along the line of sight. The
corresponding model used of F(z) is (see Fig. 2)

where W is a system constant, B1 5 3000 ms3, B2

5 20 ms, B3 5 0.1, and T 5 10 ms. At a laser radiation
wavelength assumed as l 5 10.6 mm, the temporal sam-

pling interval Dto 5 2Dzo /c, the pulse duration t
5 lp /c, and the initial moment of signal registration to

5 2zo /c may have various values; Dzo and lp are the
spatial sampling interval and the pulse length, respec-
tively. The concrete values concerning the models shown

in Figs. 1 and 2 are Dto 5 0.1 ms (Dzo 5 15 m), t
5 4 ms (lp 5 1200 m), and to 5 2 ms (zo 5 300 m).

The second model of v(z) is (see Fig. 3)

v~z ! 5 C@~z 2 zo! 2 a#exp$2@~z 2 zo! 2 a#2/b2%/b2,

(18)

where a 5 97.5 m, b 5 22.5 m, and C 5 21050 m2/s. It
describes a wind-vortex-like distribution of the radial ve-
locity v(z). Such a distribution is characterized by small
spatial size and sharp velocity variations.5,15 Therefore
it is convenient for investigating (by simulations) the
high-resolution performance potential of algorithms (14a)
and (14b). The temporal sampling interval here is cho-
sen to be Dto 5 0.01 ms (Dzo 5 1, 5 m). The pulse dura-
tions used in the simulations are t 5 200 ns (lp 5 60 m)
at l 5 2 mm and t 5 4 ms (lp 5 1200 m) at l

5 10.6 mm. As above, the initial moment to of signal
Fig. 1. Model of the alternating radial wind-velocity profile [Eq.
(16)] as a function of range.

Fig. 2. Model of the maximum-resolved signal power profile
F(z) used in the simulations of the case of alternating wind ve-
locity profile.

Fig. 3. Model of the wind-vortex-like distribution [Eq. (18)] of
the radial (Doppler) velocity along the line of sight.

F~z 5 ct/2! 5 WH 0 for t < to

B1~t 2 to!23 exp@2B2 /~t 2 to!# 1 B3 sin2@2p~t 2 to!/T# for to , t < B2 1 to

B1~t 2 to!23 exp@2B2 /~t 2 to!# for t . B2 1 to

, (17)
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registration may have various values. The model used
here of F(z) is given again by Eq. (17) but with a new set
of constants (B1 5 20 ms3, B2 5 3.5 ms, B3 5 0.05, and
T 5 1 ms).

The coherent-lidar return signal I(t) 5 J(t) 1 jQ(t) is
simulated according to Eqs. (12a) and (12b) (with fh

5 fch 5 fo 5 0, ṽ 5 0, and vo 5 vh), where the com-
plex random variable w 5 wr 1 jw j (i.e., wr and w j)
should be generated in an appropriate way. We have
solved this task by using the method described in Ref. 24.
As a test, we have compared the probability density dis-
tribution of the random quantity uI(t)u2/P(t) (the signal
power normalized to its mean value) with the correspond-
ing expected negative exponential distribution.21 As is
seen in Fig. 4, the coincidence is satisfactory. A pair of
realizations of the in-phase J(t) and the quadrature Q(t)
components of the signal are given, for example, in Fig. 5,
for the case of the first Doppler-velocity model described

above [Eq. (16)]. The covariance estimates Cov̂(t, u) are
obtained on the basis of the relation

Cov̂~t 5 t l2
5 2z l2

/c, u 5 mDto!

5 N21(
k51

N

Ik
*~t l2

!Ik~t l2
1 mDto!, (19)

where N is the number of realizations employed, Ik(t).
The same relation, at m 5 0, provides the signal power

profile estimates P̂(t) 5 Cov̂(t, u 5 0). Then the esti-

mates F̂(z 5 ct/2) of the short-pulse signal power profile
F(z 5 ct/2) are obtained (by deconvolution8) as the solu-

tion of Eq. (13c) with P(t) 5 P̂(t). This solution has the

form F̂(z 5 ct/2) 5 F̂@z 5 c(t 2 t)/2# 1 (2/c)P̂ t8(t), F̂(z
< zo) 5 0. The simulations performed show that, for in-
stance, an additive noise at signal-to-noise ratio S/N (de-
fined as, e.g., in Ref. 25) of the order of 100, at maximum
signal power, does not have a noticeable effect on the final
results when N 5 500. Therefore, we have investigated
mainly the influence of speckle noise on algorithm perfor-
mance. A reduction of the influence of noise is achieved
by using sufficiently large statistical ensembles of realiza-
tions Ik(t) and smoothing the covariance estimates and
the recovered Doppler-velocity profiles vr(z). We do not
consider the influence of the frequency chirp on the final
results; that is, we assume that the chirp effect is negli-
gible.

The results from the simulations show that algorithms
(14a) and (14b) allow one to retrieve the profile of v(z)
with a high spatial resolution but on the basis of a suffi-
ciently large number of laser shots to reduce the error due
to speckle noise. Thus the speckle noise limits the tem-
poral resolution, i.e., the ability to observe rapid changes
in atmospheric conditions. Because of the recurrence
character of the algorithms, the noise-induced random er-
ror is accumulated and increases with the increase of z

2 zo . The step of the increase is equal to the laser pulse
length and consequently is longer at longer sensing
pulses. However, in this case the noise-error increment
per step is higher. Therefore one should use pulses with
optimum length such that the increase of the noise error
with z 2 zo is slow. Filtering the covariance estimate

Cov̂(t, u) or the retrieved profile vr(z) of v(z), or both, is
an effective way to suppress the speckle-noise influence
and thus to reduce the number of laser shots required to
achieve a prescribed accuracy. Such an approach leads
to improvement in the temporal resolution of retrieving
v(z) but is accompanied by some lowering of the spatial
resolution. Hence the effective width of the filter window
should have an optimum value, thus ensuring consider-
able noise suppression at an acceptable high spatial reso-
lution.

In Figs. 6(a) and 6(b) we have represented the profiles
of vr(z) restored by use of relations (14a) and (14b), re-
spectively. These profiles correspond to the model of v(z)
described by Eq. (16). The laser wavelength and pulse
length assumed are l 5 10.6 mm and lp 5 1200 m, re-
spectively. The number of simulated laser shots (signal
realizations) is N 5 2000. A 8Dto- (8Dzo)-wide-window

moving average smoothing of Cov̂(t, u) and vr(z) is also
performed. So the achievable resolution cell is R

; 8Dto(5120 m) ! ct/2(5600 m). It is shown in Figs.
6(a) and 6(b) that the speckle-noise effect accumulates
with the increase in distance z 2 zo . Also, it is notice-
able that at longer distances (z 2 zo . 3 km in the
present case), algorithm (14a) is more affected by the
speckle noise. At shorter distances from zo (z 2 zo

; several pulse lengths) both algorithms lead to accept-
able accuracy of retrieving v(z) even at narrower filter
window and considerably smaller number of realizations
(e.g., N ; 500). The last property of the discussed algo-

Fig. 4. Probability density distribution of the heterodyne signal
power normalized to its mean value @ uI(t)u2/P(t)#, compared with
the expected negative exponential distribution (dashed curve).

Fig. 5. One simulated signal realization corresponding to the
models in Figs. 1 and 2, at l 5 10.6 mm and t 5 4 ms (lp

5 1200 m). The in-phase J(t) (solid curve) and quadrature
Q(t) (dashed curve) components of the signal are presented.
The sampling interval employed is Dto(Dzo) 5 0.1 ms (15 m).
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rithms suggests that a way to increase the range of re-
mote sensing with high spatial and temporal resolution
and accuracy is to progressively increase the lidar dead
zone @0, zo#. The simulations confirm the good results
from such an approach of scanning (increasing step by
step) the interval @0, zo# [see Fig. 6(c)]. The number of
realizations employed in this case is N 5 500, and

Cov̂(t, u) and vr(z) are smoothed by a 4Dto-
(4Dzo)-wide-window moving average (R ; 60 m). As it
is beyond the scope of this paper, we shall not discuss
here any technical aspects regarding the scan of the lidar
dead zone.

The dotted curves in Figs. 6(a) and 6(b) represent the
profile of vr(z) corresponding to the same model of v(z)
[Eq. (16)] but obtained by using the PP algorithm.11 The
number of sampling points employed for averaging along
the line of sight is M 5 20. Thus the resolution cell
achievable in this case is Rpp ; c(MDto 1 t)/2
5 c(20Dto 1 t)/2; Dto 5 0.1 ms, t 5 4 ms. To reduce

the speckle-noise effect, the covariance estimate Cov̂(t, u)
is obtained by additional averaging over N 5 500 realiza-
tions of I(t). It can be seen that the resultant noise error
is negligible, but there is a noticeable error due to the av-
eraging along the line of sight and the finite pulse dura-
tion, i.e., as if the profile vr(z) is obtained by a
Rpp-wide-window moving averaging of v(z).

Profiles of vr(z) corresponding to the model of a wind
vortex [Eq. (18)] and restored by the use of formulas (14a)
and (14b) are shown in Figs. 7(a) and 7(b), respectively.
They concern the case of l 5 2 mm and t 5 0.2 ms, but
the same are in practice the results for l 5 10.6 mm and
t 5 4 ms (see Ref. 25). In order to avoid excessive accu-
mulation of the noise, the wind vortex area begins from
the dead-zone end (z 5 zo) and is covered by only several
pulse lengths [z 2 zo ; (2 2 3)ct/2 when t 5 200 ns
and l 5 2 mm, and z 2 zo ! ct/2 when t 5 4 ms and l

5 10.6 mm]. Thus v(z) is accurately retrieved on the ba-

sis of N 5 1000 realizations Ik(t) after filtering Cov̂(t, u)
by a moving average with a 6Dto-wide window (R
; 9 m) when Eq. (14a) is used and a 4Dto-wide window
(R ; 6 m) when Eq. (14b) is used. The same profile of

Fig. 6. Alternating radial wind velocity profiles vr(z) restored in
the case of rectangular pulse (with l 5 10.6 mm and t 5 4 ms)
by use of (a) algorithm (14a), (b) algorithm (14b), and (c) algo-
rithm (14a) and the lidar dead-zone scanning technique. The
sampling interval employed is Dto(Dzo) 5 0.1 ms (15 m). The
number of signal realizations employed is (a) and (b) N 5 2000

and (c) N 5 500. Cov̂(t, u) and vr(z) are smoothed by a moving
average with (a) and (b) 8Dto- (8Dzo)-wide window and (c)
4Dto- (4Dzo)-wide window. The original profile of v(z) [de-
scribed by Eq. (16)] is given for comparison by the dashed curve.
The dotted curves in (a) and (b) represent the result obtained
with the PP algorithm.

Fig. 7. Wind-vortex Doppler-velocity profiles vr(z) restored in
the case of rectangular pulse (with t 5 0.2 ms and l 5 2 mm) by
use of (a) algorithm (14a) and (b) algorithm (14b). The sampling
interval employed is Dto(Dzo) 5 0.01 ms (1.5 m), and the num-

ber of signal realizations is N 5 1000. Cov̂(t, u) and vr(z) are
smoothed by a moving average with (a) 6Dto- (6Dzo)-wide win-
dow and (b) 4Dto- (4Dzo)-wide window. The original profile of
v(z) (dashed curve) and the profile obtained with the PP algo-
rithm (dotted curve) are given for comparison.
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v(z) can be retrieved without noticeable statistical error
by using a PP estimator at M 5 20 and N 5 500. How-
ever, as the minimal resolution cell in this case is Rpp

; 60 m (of the order of the wind-vortex size), the final re-
sult for vr(z) is distorted with respect to v(z) (see the dot-
ted curves in Figs. 7(a) and 7(b) as well as Refs. 15 and 26
for more detail). The retrieved maximum-velocity mag-
nitude is nearly two times smaller than the true one, and
the positive-to-negative peak positions are separated by a
distance different from the original one.

Since the rectangular pulse shape is usually some ap-
proximation of real pulse shapes, it is of interest to prove
whether the approach developed here for rectangular
pulses will lead to an acceptable recovery of v(z) in the
case of near-rectangular (rectangularlike) pulses. For
this purpose we have considered the following rectangu-
larlike pulse shape:

f~q ! 5 H 0 for q < 0

D@1 2 exp~2q/tr!# for 0 < q < t

exp@2~q 2 t !/tr# for t , q

, (20)

where D 5 @1 2 exp(2t/tr)#
21 and the quantities t and tr

may be interpreted as approximating rectangular pulse
duration and rise (and decay) time, respectively. The
signal realizations Ik(t) corresponding to the above pulse
shape are determined on the basis of Eq. (12a) at fh

5 fch 5 fo 5 0 and vo 5 vh . The covariance estimate

Cov̂(t 5 t l2
5 2z l2

/c, u 5 mDto) is obtained according to

Eq. (19). Then, by using relations (14a) and (14b), we ob-
tain two restored Doppler-velocity profiles vr(z). The re-
sults for vr(z) [compared with the true profile v(z)] corre-
sponding to the model of the wind vortex described above
[Eq. (18)] are represented in Figs. 8(a) and 8(b). It is as-
sumed that the sensing radiation wavelength and the
pulse duration are, respectively, l 5 2 mm and t
5 0.2 ms. As may be expected, at relatively small rise
(decay) time tr , an accurate restoration of v(z) is
achieved. The restoration error increases with the in-
crease in tr but retains an acceptable value even at pulse
shapes that have near-triangular form. The profiles of
vr(z) obtained by use of the PP algorithm are in general
more distorted [with respect to the true profile v(z)] than
those obtained with the algorithms developed here. Only
at relatively large values of tr , when the rectangularlike
pulses become in fact triangularlike ones do the two types
of distortions become comparable.

The simulations conducted show that the approach de-
veloped here of retrieving v(z) permits one to reach a
high spatial resolution without specifically decreasing the
laser radiation wavelength, the pulse duration, and the
sampling interval. At the same time, appropriate
smoothing and lidar dead-zone scanning techniques as
well as powerful lasers with high pulse-repetition rates
should be used to ensure acceptable temporal resolution.

6. CONCLUSION

The inverse mathematic techniques developed in this
study can be used successfully for retrieving high-range-
resolution Doppler-velocity profiles on the basis of data
obtained by coherent heterodyne Doppler lidars with
(relatively long) rectangular and rectangularlike sensing
laser pulses. These techniques allow one to achieve reso-
lution scales that are considerably smaller than the pulse
length. The techniques generalize some known tech-
niques, including the PP algorithm, of determining
Doppler-velocity profiles that are strictly valid only in the
case of uniform aerosol velocity and concentration within
line-of-sight intervals of the order of the pulse length.

The speckle noise is the main disturbing factor that
leads to the appearance of noise in the final results. The
use of a large number of laser shots provided by powerful
lasers with high pulse-repetition rates is a way to sup-
press the noise and obtain accurate results. To avoid a
too-large statistical volume, and thus to accelerate the
measuring procedures (to improve the temporal resolu-
tion), one can essentially reduce the speckle-noise effect
by filtering the autocovariance estimates and the recov-
ered noisy profiles as well as by using the lidar dead-zone
scanning technique.
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Fig. 8. Wind-vortex Doppler-velocity profiles vr(z) restored in
the case of (inset) a rectangularlike pulse, with l 5 2 mm, t
5 0.2 ms, and tr 5 0.01 ms (dashed curve), 0.02 ms (dashed–
dotted curve), 0.04 ms (dotted curve), 0.06 ms (dashed–double-
dotted curve), by use of (a) algorithm (14a) and (b) algorithm
(14b). The sampling interval employed is Dto(Dzo)
5 0.01 ms (1.5 m). The number of signal realizations em-

ployed is N 5 1000. Cov̂(t, u) and vr(z) are smoothed by a mov-
ing average with (a) 8Dto- (8Dzo)-wide window and (b) 4Dto-
(4Dzo)-wide window. The original profile of v(z) is given for
comparison by the solid curve.
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