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Effect of pulse-shape uncertainty on the
accuracy of deconvolved lidar profiles
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The effect of random and deterministic pulse-shape uncertainties on the accuracy of the Fourier deconvolution
algorithm for improving the resolution of long-pulse lidars is investigated theoretically and by computer
simulations. Various cases of pulse uncertainties are considered including those that are typical of Doppler
lidars. It is shown that the retrieval error is a consequence of two main effects. The first effect consists
of a shift up or down (depending on the sign of the uncertainty integral area) of the lidar profile as a whole,
proportionally to the ratio of the pulse uncertainty area to the true pulse area. The second effect consists
of additional amplitude and phase distortions of the spectrum of the small-scale inhomogeneities of the lidar
profile. The results obtained allow us to predict the order and the character of the possible distortions and
to choose ways to reduce or prevent them.
1. INTRODUCTION
The lidar systems that use long sensing laser pulses (e.g.,
emitted by a TE (TEA) CO2 laser1,2 have low spatial
resolution that is of the order of the pulse length if the
integration period of the photodetector is negligible. In
this case the lidar return signal F std at moment t after
the pulse emission is described by the convolution3

F std ­
Z `

2`

Sst 2 2z0ycdFsz0ddz0 (1)

of the pulse shape Ssq d and the maximum-resolved (ob-
tainable by a sufficiently short laser pulse) lidar profile
Fszd. In Eq. (1), c is the speed of light, z0 is the coor-
dinate along the line of sight, Ssq d ­ P sq dyPp, P sq d is
the pulse power shape and Pp is its peak value, and q is
a time variable. As a result of the convolution effect in
the case of CO2 Doppler lidars that is mentioned in Refs. 4
and 5, important information about the small-scale varia-
tions of the backscattering within the long-resolution cell
(typically 200–500 m) is lost during the Doppler velocity
measurements. This loss of information expresses the
well-known conflict between the range and the velocity
resolutions in Doppler radars and lidars. An approach
for retrieval of the mean atmospheric backscattering co-
efficient and its fluctuations has been developed in Refs. 6
and 7 for CO2 differential absorption lidar measurements.
This approach is based on the so-called correction function
and requires some preliminary information (provided by
the differential absorption lidar technique) about the at-
mospheric absorption and about the relation between the
absorption and the scattering.

A direct way to improve the lidar resolution is to
solve Eq. (1) with respect to Fszd. That is why ear-
lier we developed8,9 deconvolution techniques to invert
Eq. (1) when the pulse shape is known without any un-
certainty. These techniques are based on Fourier trans-
formation, the Volterra integral equation, or a recurrence
relation and ensure good quality in the retrieval of the fine
structure of the backscattering inhomogeneities. Such
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an approach is essential for single-wavelength Doppler li-
dars. It does not require preliminary information about
the absorption or about the spatial spectra of the in-
homogeneities. As a result, the range resolution of the
backscattering profiles becomes better than that of the ve-
locity profiles. The application of the deconvolution tech-
niques to Doppler lidar data from the National Oceanic
and Atmospheric Administration was demonstrated in
Refs. 10 and 11, in which some of the statistical char-
acteristics of the data within the Doppler resolution cell
had been determined.

As briefly noted in Refs. 8 and 12, because of various
factors the shape Ssq d might be determined with some
regular (deterministic) or random uncertainties that lead
to errors in the determination of Fszd. As an example,
the spike in the laser pulse shape of TEA CO2 Doppler
lidars is often not well recorded; i.e., it is cut, in the output
raw data.13 The purpose of the present study, being in
a sense an addition to that of Ref. 8, is to investigate the
relations between the pulse-shape uncertainties and the
corresponding errors in the restoration of the lidar profiles
Fszd. This problem is of importance for the analysis of
the limitations of the deconvolution techniques as well as
for the analysis of the requirements that are satisfied by
the lidar data recorders.

2. PULSE-UNCERTAINTY INFLUENCE
ON THE ACCURACY OF THE
DECONVOLVED LIDAR PROFILES
The Fourier deconvolution algorithm is based on the
expression8

Fsz ; cty2d ­ spcd21
Z `

2`

fF̃ svdyS̃svdgexps2jvtddv , (2)

where S̃svd ­
R`

2` Sst0 dexps jvt0 ddt0 and F̃ svd ­R`

2` F st0 dexps jvt0 ddt0 are Fourier transforms of S and F,
respectively; j is imaginary unity; and F̃svd ; F̃s2vycd ­
F̃ svdyS̃svd ­ scy2d

R`

2` Fsz0 ­ ct0y2dexps jvt0 ddt0. Let
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us represent the measured pulse shape Smsq d as a
sum Smsq d ­ Ssq d 1 f sq d of the true pulse shape Ssq d
and a deterministic or random uncertainty f sq d in its
measurement. Then the Fourier deconvolution error is
obtained on the basis of Eq. (2) as

dFsz ­ cty2d ­ Frszd 2 Fszd

­ 2 spcd21
Z `

2`

F̃svdf̃ svdfS̃svd 1 f̃ svdg21

3 exps2jvtddv , (3)

where Frszd is the lidar profile restored with use of
the measured pulse shape Smsq d and f̃ svd ­

R`

2` f sq d
exps jvq ddq is the Fourier transform of f sq d. As far as
F̃svd, S̃svd, and f̃ svd are expressible as integrals over all
values of a spatial variable z0 ­ ct0y2, Eq. (3) does not
represent, in general, a local dependence of dFszd on Fszd
and f szd.

The Fourier transformation of Eq. (3) leads to the re-
lation d̃FsvdS̃msvd ­ 2s2ycdF̃svdf̃ svd, where S̃msvd ­
S̃svd 1 f̃ svd, and d̃Fsvd ­

R`

2` dFsz ­ cty2dexps jvtddt
are the Fourier transforms of Smsq d and dFsz ­ cty2d,
respectively. The inverse Fourier transform of the last
relation leads to the equation

Sm p dF ­ 2f p F , (4)

which expresses the nonlocal interconnection between the
uncertainty f and the error dF (p denotes a convolution).
The sense of Eq. (4) is that, for instance, a positive-sign
uncertainty f sq d . 0 is equivalent to a pseudocontribution
to the integration in Eq. (1) [to the signal F std]. Corre-
spondingly, the deconvolution process compensates this
pseudocontribution by lowering the restored profile Fr

with respect to F.

A. Deterministic Uncertainties
Here we analyze some general features of the influence
of different types of deterministic uncertainty on the re-
trieval accuracy. Let us first consider f sq d as a slowly
varying [in comparison with Ssq d] prolonged determin-
istic function of q with constant sign and assume that
f sq d ,, Ssq d. Correspondingly, the spectrum f̃ svd will
be narrow compared with S̃svd and will be concentrated
around v ­ 0. Then we may neglect f̃ svd in the inte-
grand denominator of Eq. (3) and integrate over v, consid-
ering S̃svd to be a constant equal to S̃s0d ­

R`

2` Ssq ddq ­
teff , which may be interpreted as the effective pulse du-
ration. In this way, from Eq. (3) we obtain the following
expression for dF:

dFsz ­ cty2d ø 2peff
21

Z `

2`

Fsz0 df st 2 2z0ycddz0

­ 2s punypeff dFstd . (5)

Relation (5) shows that the error dF is proportional to
the magnitudes of F and f and involves interactions
of f with all values of F within the spatial interval of
the uncertainty. In relation (5), peff ­ scy2dteff, pun ­
scy2d

R`

0 f sq ddq , and the value of F ­ pun
21s f p Fd may

be interpreted as being weighted by the uncertainty av-
erage of F. Here peff and pun may be considered to be
some effective pulse and uncertainty areas, respectively.
In general, the uncertainty area pun is an integral char-
acteristic of the uncertainty effect. It may be positive or
negative or even equal to zero for uncertainties with al-
ternating signs.

A typical case of a fast-varying short-range uncertainty
is the cut of a pulse spike. This case is essential for
the CO2 Doppler lidars. Here we may consider the pulse
shape as a sum Ssq d ­ fS sq d 1 fR sq d of the spike fS sq d
and the remaining tail fR sq d. Thus Smsq d ­ fR sq d and
f sq d ­ 2fS sq d so that Eq. (4) acquires the form fS p F ­
fR p dF from which, taking into account that fS p F ø
pS F, one may write

dFstdyFstd ø pSypR . (6)

In relation (6), pS ­ scy2d
R`

0 fS sq ddq is the effective
spike area, pR ­ scy2d

R`

0 fR sq ddq is the effective remain-
der area, and dFstd ­ pR

21s fR p dFd may be interpreted as
a weighted, by the remainder, average of dF. It can be
seen that the weighted error dF . 0 and that the relative
weighted error dFyF is a positive constant approximately
equal to pSypR . This positive tendency suggests that a
spike cut causes an elevation proportional to pSypR of
Fr as a whole with respect to F. Such an effect can be
expected because the spike cut is a negative-sign uncer-
tainty f sq d ­ 2fS sq d.

For a more detailed analysis of the spike-cut influence
on the retrieval accuracy, we may consider the profile Fstd
to be a sum Fstd ­ Fsmstd 1 Fvstd of a smooth component
Fsmstd and a fast-varying component Fvstd describing the
small-scale inhomogeneities of Fstd. The mechanism of
the uncertainty effect on the retrieval accuracy can be
understood by analysis of the error in the restoration of
the smooth component Fsmstd and in one of the harmonic
(sine, cosine) components F0std of the spectrum of the
small-scale inhomogeneities. Then Eq. (3) acquires the
form

dFsz ­ cty2d ­ 2spcd21sJ1 1 J2d , (7a)

where

J1 ­
Z `

2`

F̃smsvdF svdexps2jvtddv , (7b)

J2 ­
Z `

2`

F̃0svdF svdexps2jvtddv , (7c)

and F svd ­ f̃ svdfS̃svd 1 f̃ svdg21. F̃smsvd ­
R

`

2` Fsmstd
exps jvtddt and F̃0svd ­

R`

2` F0stdexps jvtddt are the
Fourier transforms of Fsmstd and F0std, respectively.
For a spike cut we have f̃ svd ­ 2f̃S svd ­ 2

R
`

2` fS sq d
exps jvq ddq and S̃svd 1 f̃ svd ­ f̃R svd ­

R
`

2` fR sq d
exps jvq ddq . Since a spike is short compared with
Fsmstd and F0std, its spectral width Dv exceeds the
spectral widths Dvsm and Dv0 of F̃smsvd and F̃0svd.
The spectral width DvR of f̃R svd satisfies the inequality
Dv .. DvR .. sDvsm, Dv0d because the pulse remainder
fR std is shorter than Fstd and F0std but is longer than
fS std. If the spike is shorter than the oscillation period
T0 ­ 2pyv0 of F0std so that Dv . v0, the integration
in J1 is restricted by the profile of F̃smsvd and is con-
centrated around v ­ 0, where f̃ svd ­ 2f̃S svd ø 2f̃S s0d
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and S̃svd 1 f̃ svd ­ f̃Rsvd ø f̃R s0d. Similarly, the in-
tegration in J2 is concentrated around the peak fre-
quencies v ­ 6v0 of F̃0svd, where f̃ svd ø 2f̃S s0d and
S̃svd 1 f̃ svd ø f̃R s6v0d. Then by using Eqs. (7b) and
(7c) we obtain that

J1 ­ 2pcs pSypR dFsmsz ­ cty2d , (8a)

J2 ­ 2pcf pSypR sv0dg hcosfwR sv0dgF0sz ­ cty2d

1 2 sinfwRsv0dgspcd21 ImfJasz ­ cty2dgj , (8b)

where pR svd ­ scy2djf̃R svdj and wR svd ­ argf f̃R svdg.
The symbols j ? j and argf?g denote the module and the ar-
gument, respectively, of a complex quantity. The quan-
tity Jastd ­

R `

0 F0svdexps2jvtddv is the analytical signal
of spcdF0std, and its imaginary part ImfJag is connected to
its real part RefJag ­ spcy2dF0std by the Hilbert transfor-
mation. That is, ImfJastdg ­ p21P

R`

2` hRefJast0 dgyst 2

t0 dj dt0 ­ scy2dP
R`

2` fF0st0 dyst 2 t0 dgdt0, where P de-
notes the principal value of the integral at the sin-
gular point t0 ­ t. Thus for a sine function F0std ­
A0 sinsv0td (A0 is the dimensional amplitude) we ob-
tain that ImfJastdg ­ 2spcy2dA0 cossv0td. For a co-
sine function F0std ­ A0 cossv0td we obtain ImfJastdg ­
spcy2dA0 sinsv0td. In both cases, on the basis of
Eqs. (7a), (8a), and (8b) we obtain the following estimate
of the error caused by a spike cut:

dFsz ­ cty2d ø s pSypRdFsmsz ­ cty2d

1 f pSypRsv0dgF0fz 2 zshsv0dg , (9)

where zshsvd ­ cwR svdys2vd is a spatial phase shift of
the error oscillations with respect to the oscillations of
F0. The first term on the right-hand side of relation (9)
describes an elevation of the smooth component Fsmszd
proportional to pSypR that leads to an elevation of Fr

as a whole with respect to F. The second term describes
both an increase in the amplitude of the oscillatory compo-
nent F0sz ­ cty2d proportional to pSypR sv0d and a phase
shift zshsv0d of its oscillations. It can be seen that these
two effects are frequency dependent. It means that the
spike cut leads to distortion of the spectrum of the in-
homogeneities of the restored lidar profile in comparison
with the spectrum of the original profile. The frequency
dependence of the second term on the right-hand side of
relation (9) is determined only by the spectrum f̃R svd of
the remainder pulse. This is a consequence of the as-
sumption that the spike cut is shorter than the period T0.
Then the influence of the spike spectrum is negligible be-
cause f̃S svd ø f̃Ss0d.

To complete the analysis of deterministic uncertain-
ties, we briefly consider the case of uncertainties with al-
ternating signs having oscillatory character, e.g., f std ­
Imfastdexps jvf tdg, where astd . 0 is the amplitude func-
tion. We assume that the uncertainty duration is of the
order of the pulse duration, so the spectrum f̃ svd will
have a peak at v ­ vf and will be wider than F̃smsvd
and F̃0svd. Under these conditions we may consider
f̃ svd, S̃svd, and consequently F̃ svd to be slowly varying
functions of v within the essential integration intervals
around v ­ 0 and v ­ 6v0. Then, following the same
procedure as in the case of a pulse cut, on the basis of
Eqs. (7a)–(7c) we obtain an estimate of the retrieval er-
ror in the form

dFsz ­ cty2d ø 2s punypeff dFsmsz ­ cty2d

2 jF sv0djF0fz 2 zshsv0dg , (10)

where zshsvd ­ scy2vdargfF svdg is a spatial phase shift.
Relation (10) shows that the uncertainty leads, propor-
tionally to punypeff , to an elevation or a lowering (depend-
ing on the sign of pun) of Fr as a whole with respect
to F. Besides, the second term on the right-hand side
of relation (10) indicates additional amplitude and phase
distortions of F0 (see as well the case of the pulse cut).

B. Random Uncertainties
In this subsection we consider the retrieval errors caused
by random uncertainties with correlation time tc .. teff ,
by fluctuating spike cuts, and by random uncertainties
with correlation time tc ,, teff .

In the first case, when tc .. teff , the whole measured
pulse shape fluctuates from shot to shot. Then by use of
Eq. (4) we estimate the corresponding rms error as

sFsz ­ cty2d ­ kjdFsz ­ cty2dj2l1/2 ø sspunypeff dFstd ,

(11)

where kpunl ­ 0 and kpun
2l1/2 ­ spun ; k?l denotes ensem-

ble average. According to relation (11), an averaging of
Smsq d over a number N of laser shots, before application
of Eq. (2), will reduce sF

p
N times because of the reduc-

tion of spun in the same proportion.
A fluctuating spike cut may arise even at a stable pulse

shape with a short spike because of the fluctuations of the
positions of the sampling pulses with respect to the laser
pulse emission. In this case we may neglect the fluctua-
tions of pR and pR sv0d and use relation (9) to determine
the statistical retrieval error s ­ ssm

2 1 sr
2d1/2, where

s2 ­ kdF
2l, sm ­ kdFl, and sr ­ ksdF 2 smd2l1/2. Obvi-

ously, the expression of s has the same form as that of
relation (9), where pS should be replaced by k pS

2l1/2 ­
sk pSl2 1 DpSd1/2; DpS ­ ks ps 2 k pS ldl2.

Let us further consider f sq d as a random function with
zero mean value, variance Df sq d ­ sf

2sq d ­ kjf sq d2jl (sf

is the standard deviation), and correlation time tc ,, teff .
A possible (statistically) quasi-stationary model of f sq d is

f sq d ­ sf sq df̃ sq d , (12)

where f̃ sq d is a statistically stationary Gaussian-
distributed and Gaussian-correlated zero-mean random
function with variance Df̃ ­ 1 and correlation time tc.
The value of sf sq d does not change essentially within
time intervals of the order of tc. The variance Df may
be modeled as Df sq d ­ g2S2sqd, where 0 , g # 1. At a
given realization of f sq d the retrieval error dF is described
by Eq. (3) or Eqs. (7a)–(7c). It is reasonable to assume
that when f sq d is many times as long as tc, its spectral
amplitude profile jf̃ svdj will closely follow the profile of
kjf̃ svdj2l1/2 / fIf svdg1/2, where If svd is the power spectrum
of f sq d. Consequently, the spectral width Dv of f̃ is of
the order of that of If svd, i.e., Dv , tc

21. When tc ,, T0,
the spectral width Dv .. v0 and we may assume that in
Eqs. (7b) and (7c), f̃ svd ø f̃ sv0d ø f̃ s0d. If, in addition,
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q ,, 1, we have f̃ s0d ,, S̃s0d. Then in the well-known
procedure of using Eqs. (7b) and (7c) we obtain that

dFsz ­ cty2d ø 2spunypeff d hFsmsz ­ cty2d

1 jFrsv0djF0fz 2 zshsv0dgj , (13a)

whereFrsvd ­ peffyf peff svd 1 pung,peff svd ­ scy2d
R

`

0 Sst0 d
exps jvt0 ddt0, and zshsvd ­ scy2vdargfFrsvdg. One can
simplify the factor Frsv0d by neglecting pun in its denom-
inator when jpunj ,, jpeff sv0dj. If pun . jpeffsv0dj, one
can preliminarily average Smsq d over N laser shots to
a certain extent when jpunj ,, jpeff sv0dj, where pun is
the area of the average uncertainty f sq d. Then Frsv0d ø
peffypeff sv0d, and the rms error s ­ kjdFj2l1/2 is described
by relation (13a), in which one should replace 2pun with
the quantity spuny

p
N . For a quasi-stationary random

process f sq d [Eq. (12)] the value of spun ­ scy2dstqtcd1/2,
where tc ­

R
`

2` Kstddt is the correlation time of f sq d,
Kstd ­ k f̃ sq df̃ sq 1 tdl is the correlation coefficient of f̃ sq d,
and tq ­

R `

2` sf
2sq ddq . Thus we obtain that

s ­ fstqtcd1/2ysN1/2teff dg hFsmsz ­ cty2d

1 jFr sv0djF0fz 2 zshsv0dgj , (13b)

i.e., s / stcyNd1/2. Certainly, the general principle re-
mains valid. That is, the retrieval error is proportional
to the ratio of the uncertainty area (in a statistical sense)
to the true pulse area, with additional amplitude and
phase distortions of the spectrum of the inhomogeneities
of Fstd.

3. SIMULATIONS
In the simulations conducted below, we use a model of
Fszd described earlier in Ref. 8. This model (Fig. 1) con-
sists of a smooth component Ast 2 t0d23 expf2Gst 2 t0dg,
a high-resolution component C sin2f2pst 2 t0dyT g for t0 #

t # G 1 t0 at near distances, and a double-peak structure
introducing discontinuities at a relatively far range, which
is given by the expressions D 1 d2 2 st 2 ta 2 dTpd2yTp

2

for ta # t # ta 1 2dTp, and D 1 d2 2 st 2 ta 2 3dTpd2yTp
2

for ta 1 2dTp # t # ta 1 4dTp. The parameters are
specified as follows: A ­ 3000 ms3, G ­ 20 ms, C ­
0.1, T ­ 5 ms, d ­ 0.25, D ­ 0.03, t0 ­ 4 ms, ta ­ 70 ms,
and Tp ­ 7 ms. In Fig. 1 and in the following figures the
abscissa is given in samples where a sample is assumed
to be equal to 15 m corresponding to 0.1 ms. The model
of the pulse shape Ssq d (typical for CO2 Doppler lidars)
is described by the expression

Ssq d ­ q fs
p

2eyt1dexps2q 2yt1
2d

1 s xeyt2dexps2qyt2dgySp , (14)

where Sp is the peak value of the numerator. The con-
stants t1, t2, and x may have various values in order to
produce various shapes. A pulse shape with parameters
t1 ­ 0.1 ms, t2 ­ 2 ms, and x ­ 0.2 is shown in Fig. 1.

First, we modeled a smooth uncertainty as a parabola
f sq d ­ Af1 2 s2q 2 t0d2yt0

2g (for 0 # q # t0), which
is added to or subtracted from the true shape Ssq d; A

and t0 are the parameters to be adjusted. The simu-
lations conducted show that the retrieval error is ap-
proximately equal to 2spunypeff dFstd [see relation (5)].
An illustration of the influence of a parabolic uncer-
tainty with parameters A ­ 0.025 and t0 ­ 12 ms
is given in Fig. 2(a). The pulse shape used is given
in Fig. 1. The obtained error dFszd is compared in
Fig. 2(b) with the approximate dependence [relation (5)],
which turns out to describe the behavior of dF cor-
rectly. One can see that Frszd is lowered with respect

Fig. 1. Models of the original short-pulse lidar profile and (in-
set) of a laser pulse shape (with t1 ­ 0.1 ms, t2 ­ 2 ms, and
x ­ 0.2) as a functions of sample number.

Fig. 2. (a) Original profile (dashed curve) and the profile re-
stored by use of Fourier deconvolution (solid curve) in the case
of parabolic uncertainty with A ­ 0.025 and t0 ­ 12 ms; (b)
obtained (solid curve) and estimated [Eq. (4), dashed curve]
errors corresponding to the data of Fig. 2(a).
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Fig. 3. Original profile (dashed curve) and the profile restored
for the case of the spike cut (solid curve); (b) obtained (solid curve)
and estimated [relation (9), dashed curve] errors corresponding
to the data of (a).

Fig. 4. Relative error dFyF for the restored profile given in
Fig. 3(a), compared with the value of pSypR given by the dashed
horizontal line.

to Fszd, and there is a maximum of this lowering that
is shifted with respect to the highest maximum of Fszd
at approximately one uncertainty length in accordance
with relation (5). When f sq d is subtracted from Ssq d,
we obtain a similar behavior with dF, but instead of
lowering we have an elevation of Frszd with respect
to Fszd.

The simulations of the effects of spike cuts confirm
the theoretical conclusions [see relations (6) and (9)]
about the behavior of the retrieval error dF. That is
[Fig. 3(a)], the spike cut leads to an elevation of the
smooth component of Fszd and to some increase in the
amplitude and phase shift of the small-scale variations
of Fz. One can see from Fig. 3(b) that the behavior of
dF is described correctly by the approximate expression,
relation (9). In Fig. 4 we compare the value of pSypR

with the relative error dFyF for the restored profile given
in Fig. 3(a). It can be seen that the function dFstdyFstd
oscillates slightly around the value pSypR .

Uncertainties with alternating signs have been mod-
eled by the expression f std ­ qSstdsinsvf td, where 0 ,

q , 1. The simulations show that the restored profiles
are elevated or lowered with respect to the true profile
F when pun , 0 or pun . 0, respectively. The behav-
ior of the obtained retrieval errors is described correctly
by the approximate dependence given by relation (10).
At relatively high frequencies vf , v0 we obtained that
jpunj ,, peff and jf̃ sv0dj ,, jS̃sv0dj at values of q , 0.025.
In this case the retrieval errors are small enough that
there is no visible difference between the restored profile
Fr and the original one F. The elevation (or the lower-
ing) of Fr as well as the amplitude and the phase distor-
tions of its small-scale structure become noticeable only
at enormous values of q , 0.5.

The random uncertainties are simulated on the basis
of the model discussed in Subsection 2.B [Eq. (12)] as a
correlated noise with standard deviation sf sq d ­ gSsq d,
noise level g, and correlation time tc. The results from
the simulations show that the error obtained at a given
realization of f sq d follows closely the approximate depen-
dence given by relation (13a). Besides, even at relatively
high noise levels (e.g., g ­ 0.05), the error dF is small
enough that there is no visible difference between the
restored profile Fr and the true one F. This is a con-
sequence of the small values of pun resulting from the
small values of tc [see relation (13a)]. The averaging of
f sq d over a large number N of laser shots leads on the av-
erage to a reduction of the range of dF proportionally to
N21/2. For instance, at an enormous noise level g ­ 0.5
the visible difference between the original F and the re-
stored Fr short-pulse profiles disappears after an averag-
ing over 100 laser shots.

4. CONCLUSION
In the present paper we have investigated mainly the
mechanism of the pulse-shape uncertainty effect on the
accuracy of Fourier deconvolved lidar profiles. It is
shown that the pulse-shape uncertainties of all types
considered lead to an elevation or a lowering (depend-
ing on the sign of the uncertainty area) of the smooth
low-frequency sDvsm ,, Dvd components Fsm of the lidar
profile. This shift up or down is proportional to Fsm

and to the ratio of the uncertainty area to the true pulse
area. The smooth low-frequency sDv ,, teff

21d uncer-
tainties affect the whole profile F in the same way. The
fast-varying high-frequency svf .. teff

21 or Dv .. v0d
uncertainties lead, in addition, to amplitude and phase
distortions of the small-scale high-frequency (v0, Dv0 .

. Dvsm) structure of the lidar profile.
In general, extremely sharp spike cuts and fast-varying

alternating-sign (deterministic or random) uncertainties
lead to small retrieval errors because of their small areas
and small spectral amplitudes. Such uncertainties may
be caused by large sampling intervals or noise. The
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slowly varying prolonged uncertainties may lead to no-
ticeable errors, but they may be avoided by suitable choice
of the sampling interval. A known way to reduce the
random uncertainty influence (except for spike cuts) is to
average the pulse shape over a large number N of laser
pulses. The simple expression derived here for this case
and supported by computer simulations allows us to esti-
mate the error and to predict the value of N that is nec-
essary for achieving a prescribed accuracy.

The exact expression and the approximate estimates of
the retrieval error dF obtained in this paper allow us, at
a known order and character of the error of the pulse-
shape recorder, to estimate what type of details of the
lidar profile can be restored satisfactorily. In this case
the error magnitude jdFj should be much less than the
amplitudes of the lidar profile components of interest, so
one can determine the limitations of the Fourier deconvo-
lution technique. On the other hand, beginning from the
requirements for the quality of the lidar profile restora-
tion, one can formulate the requirements for the accuracy
of the pulse-shape recorders.
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