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On the basis of an analysis of the autocovariance of the complex heterodyne signal, some novel algorithms
are derived and investigated for recovering the nonuniform Doppler-velocity coherent-lidar profiles
within the lidar resolution interval conditioned by the sensing laser-pulse length. The case of exponen-
tially shaped sensing laser pulses is considered. The algorithm performance and efficiency are studied
and illustrated by computer simulations �based on the use of pulse models and real laser pulses�, taking
into account the influence of additive noise and radial-velocity fluctuations. It is shown that, at some
reasonable number of signal realizations used and with appropriate data processing to suppress the noise
effects, the Doppler-velocity profiles can be determined with a considerably shorter resolution interval in
comparison with that �usually accepted as a lower bound� determined by the pulse length. © 2002
Optical Society of America
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1. Introduction

The range resolution of pulsed coherent Doppler lidars
is usually accepted to be determined by the sensing
laser-pulse length �see, e.g., Refs. 1 and 2�. At the
same time, the range-resolution cell and the Doppler-
velocity uncertainty conditioned by the pulse length
are reciprocally related, and their product is propor-
tional to the wavelength of the laser radiation.3 Thus
a way to improve the range resolution without lower-
ing the velocity sensitivity is to use shorter sensing
pulses of shorter-wavelength laser radiation.

Another approach for improving the range resolu-
tion is to develop inverse mathematical techniques
for retrieving the Doppler-velocity profiles with a con-
siderably shorter resolution cell in comparison with
the pulse length. Recently, from the analysis of the
complex heterodyne signal autocovariance, we devel-
oped such techniques concerning the case of rectan-
gular and rectangularlike pulses.4 In the present
study we take the next step by deriving and investi-
gating some novel analogous techniques for the case
of exponentially shaped laser pulses. These pulses
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can be good approximations of the real asymmetric
laser pulses generated, e.g., by some solid-state and
transversely excited atmosphere CO2 lasers �see, e.g.,
Refs. 5–9�. The computer simulations conducted
confirm and illustrate the effective performance of
the inverse techniques developed in the work.

2. Coherent Lidar Signal

The sensing radiation is considered as a sequence of
quasi-monochromatic laser pulses with basic fre-
quency �0, dimensionless temporal-amplitude enve-
lope f0���, regular �chirp� and random frequency
deviations ��ch��� and ��r���, respectively, random
temporal-phase fluctuations �or���, and a mean
phase constant �0; � is a time variable, and f0��� � 0
for � � 0. Then the expression describing the
space–time amplitude and phase distribution of the
sensing laser-pulse field E0�r, t�, at the moment t
after the pulse emission, may be written in the form

E0�r, t� � ��A�r� f0�t � z�c�exp�j��0�t � z�c�

� 	
0

t
z�c

���ch�t�� � ��r�t��
dt�

� �or�t � z�c� � �0�� , (1)

where �� is, in general, a complex vector characteriz-
ing the field-polarization state; A�r� is a space-
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dependent factor in which, except for the aperture
diffraction, the atmospheric influence �extinction,
turbulence� is also taken into account �see, e.g., Ref.
10�. The line of sight coincides with the axis of the
pulsed laser beam. The vector coordinate r is ex-
pressible as r � ��, z�, where � is a transversal vector
coordinate and z is a longitudinal coordinate with
respect to the line of sight; � � 0 on the beam axis,
and z � 0 at the transceiver aperture plane ��t� � ��t,
0� � ��, 0�. In the case of a linear polarization �as-
sumed below� of the incident laser radiation, �� � e is
a real unit vector. The random frequency and phase
fluctuations ��r��� and �or��� are considered below as
mutually uncorrelated stationary random processes
with, respectively, mean values of ���r� � 0 and ��or�
� 0, symmetric probability density distributions
p���r� � p�
��r� and p��or� � p�
�or�, and autocor-
relation times �� and ��; � . � denotes ensemble aver-
age.

Under single-scattering conditions, the field vector
Eb��t, t� �at the transceiver aperture plane ��t� � ��t,
0�, at a moment t after the pulse emission� of the
radiation backscattered by aerosol particles is a su-
perposition of elementary wave fields Ebi��t, t; ri�ti��,
t�
 obtained from different scatterers having back-
scattering amplitudes11 ai and positions ri�ti�� at the
corresponding earlier moments of interaction ti�.
�The backscattered-wave propagation in the atmo-
sphere is described by the paraxially approximated
Green’s function G��t; ri
 � G���t; ri
exp�
j�0zi�c�
that takes into account in general the extinction and
turbulence effects.10� Because of the random mu-
tual disposition of the aerosol scatterers, the scatter-
ing process has an incoherent character; that is, the
field vector Eb is a sum of numerous independent
contributions Ebi with random amplitudes and
phases. Therefore any polarization component of
Eb, such as that, for instance, corresponding to the
local oscillator polarization, can be considered as a
circular complex Gaussian random quantity.12 The
equivalent local-oscillator field vector Eh��t, t� at the
transceiver aperture plane can be given in the form
Eh��t, t� � Ah��t�exp� j��ht � �h�t�
�, where Ah��t� is
the spatially dependent �complex-amplitude� factor,
�h is the optical heterodyne frequency, and �h�t� is a
function describing phase fluctuations.

When the photodetector collects all the local-
oscillator beam energy and all the backscattered ra-
diation that is covered by the receiving optical
system, the complex photocurrent I�t� resulting from
coherent heterodyne detection may be represented
as13

I�t� � J�t� � jQ�t� � � 	 Eb��t, t� � Eh*��t, t�d�t,

(2)

where � � 2qe���, q is the photodetector quantum
efficiency, e is the electron charge, � � h�2�, h is the
Planck constant, � � ��0 � �h��2, and � denotes
complex conjugation. Functions J�t� and Q�t� are

respectively in-phase and quadrature components of
I�t�, which is obviously a circular complex Gaussian
random quantity. Following the way described in
Ref. 4, we can express the profile I�t � 2z�c� of the
complex signal photocurrent for pulses with an as-
ymptotically falling tail in the form

I�t � 2z�c� � exp� j��0 � �h�t�
�

� �
l�l1�1

l2

f0�t � 2zl�c�d�� zl�exp� j�m� zl�t

� j��d��t � 2zl�c��� zl�


� j�or��t � 2zl�c��� zl�
�, (3)

where z � ct�2 is the position �along the line of sight�
of the pulse front corresponding to the moment of
detection t; l is the number of the aerosol slice be-
tween two adjacent �perpendicular to the line of
sight� planes ��, �l 
 1��z� and ��, l�z�, �z is an
elementary step along the line of sight, zl � l�z, l1 �
z0��z, l2 � ct��2�z�, z0 is the upper limit of the lidar
dead zone �the radiation backscattered from this zone
is not detectable�; �m�zl� � �0��zl� 
 �h is the inter-
mediate frequency, ��zl� � 1 
 2v�zl��c, v�zl� is the
profile of the radial �Doppler� velocity of the aerosol
scatterers; ��d��t 
 2zl�c���zl�
 � �ch��t 
 2zl�c���zl�

� ��r��t 
 2zl�c���zl�
 is the phase increment that is
due to the chirp and the random frequency fluctua-
tions, �ch��t 
 2zl�c���zl�
 � 	0

�t
2zl�c���zl� ��ch�t��dt�
and ��r��t 
 2zl�c���zl�
 � 	0

�t
2zl�c���zl� ��r�t��dt�;
d��zl� � ���zl��z
1�2wl is a random differential
quantity, where wl � w � wr � jwi is a circular
complex Gaussian random quantity with zero mean
value �w� � �wr� � �wi� � 0 and unitary variance
Dw � ��w�2� � �wr

2� � �wi
2� � 1 ��wr

2� � �wi
2� � 1⁄2�,

�wrwj� � 0, and �wlwl�s� � 0 for s � 0. Function
��zl� characterizes the contribution to the mean sig-
nal power of unitary scattering length along the line
of sight. Actually, according to Eq. �3�, the mean
signal power profile P�t � 2z�c� � ��I�t 
 2z�c��2� can
be represented as

P�t � 2z�c� � 	
z0

ct�2

f �t � 2z��c��� z��dz�, (4)

where f ��� � � f0
2���� � Pimp����Pp is a dimensionless

shape describing the pulse power shape Pimp��� nor-
malized to its peak value Pp. At sufficiently short
sensing pulses �physical delta pulses�, Eq. �4� is re-
ducible to the form

P�t � 2z�c� � Pmr�t � 2z�c� � �c�eff�2���ct�2�, (5)

where Pmr�t � 2z�c� is the so-called maximum re-
solved �short-pulse� power profile containing infor-
mation about the atmospheric extinction,
backscattering, turbulence etc.; �eff � 	0

� f ���d� is an
effective pulse duration such that the total pulse en-
ergy Eimp � 	0

� Pimp���d� � Pp�eff. At known �mea-
sured� P�t� and f ���, the profile of ��z� can be
recovered on the basis of Eq. �4� by use of deconvolu-
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tion techniques.14,15 An explicit expression of d��zl�
is

d�� zl� � � �
n

exp�
2jkDlz0ln�A��ln, zl�anl

� 	 Ah*��t�G���t; �ln, zl�d�t, (6)

where �ln and z0ln are coordinates concerning the nth
particle inside the lth slice, anl is the corresponding
scattering amplitude, and kDl � �0�l�c; z0ln is the
longitudinal position of the particle when it is met by
the pulse front. The slice thickness �z may be equal
to the spatial sampling interval along the line of sight
that corresponds to a temporal sampling interval
�t � 2�z�c. It is assumed to be large compared with
the wavelength � � 2�c��0, but sufficiently small
that, within each slice, functions ��d, �or, A, G�, and
f0 are invariable. The divergence of the pulsed laser
beam �and its radius� is also assumed to be suffi-
ciently small so that the scattering particles within
each �lth� slice have uniform radial velocity v�zl�, and
the effect of particle motion on A and G� is neglect-
ed.16,17

3. Signal Autocovariance

The coherent lidar return signal I�t� is in general a
nonstationary random process. Therefore, its auto-
covariance Cov�t, �� � �I*�t�I�t � ��� depends not only
on the time shift � but on the moment t as well. For
a positive time shift � � 0 �and for stable �h within a
pulse duration�, on the basis of Eq. �3� we obtain the
following expression of the autocovariance function of
the coherent lidar signal:

Cov�t, �� � 	
z0

ct�2

dz�� f0�t � 2z��c� f0�t � �

� 2z��c���� z��exp� j��m� z���

� ��ch�t, �, z��
� �t, �, z��!�t, �, z��

� "� z�, 2�0��c�, (7)

where

��ch�t, �, z� � �ch��t � � � 2z�c��� z�
 � �ch��t

� 2z�c��� z�
, (8a)

 �t, �, z� � �exp� j��r��t � � � 2z�c��� z�


� j��r��t � 2z�c��� z�
��, (8b)

!�t, �, z� � �exp� j�or��t � � � 2z�c��� z�


� j�or��t � 2z�c��� z�
��, (8c)

��z� � 1 
 v�z��c, and "�z, y� � 	
exp�
jyṽ�z�
p�ṽ�z�
dṽ is the characteristic function
corresponding to the probability density distribution
p�ṽ�z�
 of the radial-velocity fluctuations ṽ�z�. Here
we consider v�z� as ensemble mean value of the radial
velocity and vr�z� � v�z� � ṽ�z� as a random realiza-
tion of it, i.e., �ṽ�z�� � 0 and �vr�z�� � v�z�. For

statistically isotropic �e.g., turbulent� fluctuations ṽ,
which we assume below, the probability density p�ṽ�
is a symmetric function �p�ṽ� � p�
ṽ�
 leading to a
real characteristic function "�z, y�.

Let us further suppose that for time intervals TQ of
the order of �, the phase terms �ch, ��r, and �or
change slowly enough ��� and �� # TQ� that ��� � TQ�

 ���� � �I���TQ; here the superscript I denotes
differentiation with respect to the variable �. Then,
instead of Eqs. �8a�–�8c� we can write

��ch�t, �, z� � �ch
I��t � 2z�c��� z�
��� z�

� ��ch��t � 2z�c��� z�
��� z�, (9a)

 �t, �, z� � �exp� j��r
I��t � 2z�c��� z�
��� z��

� �exp� j��r��t � 2z�c��� z�
��� z���,

(9b)

!�t, �, z� � �exp� j�or
I��t � 2z�c��� z�
��� z���.

(9c)

Thus functions  �t, �, z� and !�t, �, z� are represented
as characteristic functions corresponding to the prob-
ability density distributions p���r���
 and p��or

I���
.
The realizations of �or

I��� are derivatives of the cor-
responding realizations of the random function
�or���. We assume that ��r��� and �or��� are sta-
tionary zero-mean random processes with symmetric
probability distributions. Respectively, �or

I��� will
be also a stationary zero-mean random process with
symmetric distribution p��or

I���
 � p�
�or
I���
. In

this case functions  and ! depend on only ���z� and
have real values:

 ���� z�
 � 	 p���r�exp� j��r��� z��d��r, (10a)

!���� z�
 � 	 p��or
I�exp� j�or

I��� z��d�or
I. (10b)

The pulse envelope f0��� can be represented as f0���
� fm����1 � g���
, where function fm��� � � f0����
describes the mean pulse shape, and the random
function g��� � � f0��� 
 fm���
�f0��� describes the
relative pulse-shape fluctuations. Then we have

� f0��� f0�� � ��� � fm��� fm�� � ��$��, ��, (10c)

where $��, �� � �1 � Covg��, ��
 and Covg��, �� �
�g���g�� � ��� is the autocovariance of g���. When
the correlation time of fluctuations �g exceeds � we
have $��, �� � $��� � �1 � Covg��, 0�
, where the
variance Covg��, 0� � �g2�������1� may depend in
general on �. If Covg��, 0� is a sufficiently smooth
function of �, it can be replaced with some appropri-
ate constant.

For stationary fluctuations g���, the autocovari-
ance Covg��, �� depends on only �, i.e., Covg��, �� �
Covg���. Then $��, �� � $��� � �1 � Covg���
. The
considerations conducted below are strictly valid for
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this case and for the case of absent fluctuations �$ �
1�.

For stationary fluctuations g���, taking into ac-
count the previous paragraph and Eqs. �9a� and
�10a�–�10c�, we can rewrite Eq. �7� in the form

Cov�t, �� � 	
z0

ct�2

dz�fm�t � 2z��c� fm�t � �

� 2z��c�$����� z��exp� j��m� z���

� ��ch��t � 2z��c��� z��
��� z��
�

�  ���� z��
!���� z��
"� z�, 2�0��c�. (11)

Cov�t, �� is a complex function with a real part Re
Cov�t, �� � �J�t�J�t � ��� � �Q�t�Q�t � ��� and an
imaginary part Im Cov�t, �� � �J�t�Q�t � ��� 
 �J�t �
��Q�t��. At � � 0, Cov�t, �� � Cov�t, 0� is equal to the
mean signal power profile P�t�. Certainly in this
case Eqs. �11� and �4� coincide.

The problem to be solved here is to determine
�m�z � ct�2� and v�z � ct�2�, at known Cov�t, �� and
f0���. The possibility of solving this problem can
be explained physically by the fact that, when mov-
ing along the line of sight, the sensing laser pulse
involves successively new elementary slices of the
scattering medium. Therefore two adjacent values
of the signal, I�t� and I�t � �t� ��t �� �eff�, differ in
the information involved about the properties of the
slice between z � ct�2 and z � c�t � �t��2. This
information may be extracted in principle by some
differentiating procedure, but as the signal has a
stochastic nature one should differentiate some sta-
tistical moments of it. To obtain the Doppler-
velocity profiles, one should use statistical moments
containing phase information. Such a moment is
the autocovariance Cov�t, �� described mathemati-
cally �at some reasonable assumptions� by Eq. �11�.

4. Retrieving the Profile of v�z� with High Resolution in
the Case of Exponentially Shaped Sensing Laser Pulses

We consider the mean pulse shape fm��� in Eq. �11�
as an exponentially shaped one that is given as
fm��� � � f0���� � �e����exp�
����, where � is a time
constant determining the pulse duration. Because
v�z� �� c, we can assume that the factor ��z�� in Eq.
�11� is equal to unity, i.e., ��z�� � 1. We also as-
sume that the frequency-chirp influence is negligi-
ble. Then we perform a three-step mathematical
procedure, beginning with differentiating Eq. �11�
with respect to t and performing some algebraic
transformations that lead to an intermediate rela-
tion. This relation is differentiated again with
respect to t, and the result is algebraically trans-
formed anew to a second intermediate relation. As
the third step, the latter relation is differentiated

with respect to t, and the result obtained is reduced
to the form

%�t, �� � Covttt
III�t, �� � �6���Covtt

II�t, ��

� �12��2�Covt
I�t, �� � �8��3�Cov�t, ��

� c�e���2 exp�
���� ���!���$���&�t, ��

� exp� j�m� z � ct�2��
�1 � ���

� ��&�t, ��
t
I��2&�t, ��


� j��m� z � ct�2�
t
I�2�2�, (12)

where &�t, �� � ��z � ct�2�"�z � ct�2, 2�0��c� and
the symbol t

I denotes differentiation with respect to t.
In Eq. �12�, the imaginary term in the braces can be
neglected when ��m�t

I�2�2 �� 1. Then the following
algorithm is obtained for retrieving the profile of
�m�z � ct�2� �and respectively v�z � ct�2�
 with a
resolution cell that can be of the order of the spatial
�or temporal� sampling interval �z �or �t � 2�z�c�:

�m� z � ct�2� � �
1 arctan�Im %�t, ���Re %�t, ��
.

(13)

Inequality ��m�t
I�2�2 �� 1 means that the change of

�m over each �c��2�-long spatial interval along the
line of sight should be essentially smaller than 2��,
i.e., ��m�t

I� � ��m�z
Ic��2 �� 2��. The decrease of the

value of � leads to a proportional increase of the upper
limit of the acceptable Doppler-velocity changes over
�c��2�-long intervals. Then Eq. �13� becomes appli-
cable to Doppler-velocity profiles with sharper varia-
tions.

Another algorithm for retrieving the profile of
�m�z � ct�2� is derived from the expression of the
first derivative G�t� � %�

I�t, � � 0� of the function %�t,
�� with respect to � at � � 0. This expression is
obtained on the basis of Eq. �12� and leads to the
relation

�m� z � ct�2� � �Im G�t�
���� z � ct�2�

� �ce2$�0���2
�, (14)

where it is taken into account that functions !,  , and
" are equal to unity when � � 0. Equation �14�
represents an exact algorithm for retrieving the
mean Doppler-velocity profile v�z� ��m�z�
 with a res-
olution interval of the order of �z��t�. This algo-
rithm requires a preliminary experimental
evaluation of the variance �g2���� � Covg�0� of the
relative pulse-shape fluctuations g��� in order to de-
termine the value of $�0� � �1 � Covg�0�
.

5. Simulations

We simulated the algorithm performance by using
various profiles of the radial Doppler velocity v�z� and
the mean short-pulse signal power ' ��z�. Below
we describe and analyze for illustration the results
obtained for the model of v�z� shown in Fig. 1. It is
a wind-vortex-like distribution of the radial velocity
v�z�. Such a distribution is characterized by small
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spatial size and sharp velocity variations.3,18 The
corresponding model of ��z� is shown in Fig. 2 �see
also Ref. 4�. The laser radiation wavelength �, the
temporal sampling interval �t � 2�z�c, and the lidar
dead-zone upper limit z0 are chosen to be � � 2 (m,
�t � 10 ns ��z � 1.5 m� and z0 � 300 m, respectively.
The pulse power shape f ��� � f0

2��� � �e2�2�
�2�exp�
2���� is shown in the inset of Fig. 2. We
simulated the case of a stable reproducible pulse
shape when g��� � 0. The value of � is chosen to be
200 ns, which corresponds to an effective pulse length
lp � c�eff ) 2c� � 120 m. This pulse length exceeds
the longitudinal wind-vortex size that is of the order
of 100 m �see Fig. 1�. As mentioned in Section 1, the
exponential pulse waveform considered here can be a
good �or even excellent9� approximation of various
�more or less asymmetric� real laser-pulse shapes in-
cluding those generated by 2-(m-wavelength solid-
state lasers.5 The aim of a prevailing part of the
simulations performed is to estimate in a pure form
the potentialities and the limitations of the exponen-
tial inverse algorithms derived in this paper. In this
case the coherent-lidar signal and all the retrieving
procedures are simulated on the basis of the pulse-
shape model described above �Fig. 2�. At the same
time it is reasonable to estimate the quality of the

exponential pulse approximations in regard to the
quality of the recovered high-resolution Doppler-
velocity profiles. For this purpose some simulations
have been conducted in which the coherent-lidar sig-
nal synthesis and the high-resolution retrieval of the
signal power profile are based on the use of real pulse
shapes, and the algorithm performance is based on
the corresponding exponential pulse approximations.
Two authentic pulse shapes we used in simulations
are given in Fig. 3 by dashed-dotted and solid curves.
They are reconstructed on the basis of experimental
data �concerning a 1.03-(m passively Q-switched Yb:
YAG laser and a 2-(m diode-pumped Tm:YAG laser�
given in Refs. 8 and 5, respectively. The correspond-
ing exponentially shaped approximations are given
by dotted and dashed curves. Let us note that it is
not the case of excellent approximations. Neverthe-
less, as shown below, the quality of the recovered
Doppler-velocity profiles is quite satisfactory. The
first approximative waveform �dotted curve� closely
describes the increasing part of the pulse and has
nearly the same pulse-shape area; the time constant
� is 190 ns. The second approximative waveform
closely describes all the pulse shape to the exclusion
of some initial part of it; the time constant � is 200 ns.
The cut of the leading pulse edge �with td � 170-ns
duration� corresponds to an apparent pulse-emission
delay td that is compensated for by a shift left �equal
to zd � ctd�2� of the restored radial-velocity profile.

The realizations of the coherent-lidar return signal
I�t� � J�t� � jQ�t� are simulated according to Eq. �3�
�with �h � �0 � �ch � 0 and �h � �0�, where the
quantity w � wr � jwi is generated as a circular
complex Gaussian random variable.4,19 Random
frequency ��r and phase �or fluctuations are not es-
pecially simulated because their effect is analogous to
�and can in principle be combined with� the effect of
the radial-velocity fluctuations ṽ�z�. The latter are
simulated here as uncorrelated Gaussian random
variables with constant standard deviation *v�z� �
�ṽ2�z��1�2 � constant and as normally distributed tur-
bulent fluctuations, whose one-dimensional �along
the line of sight� autocovariance is Covv�+z� �

Fig. 1. Model of the wind-vortex-like distribution of the radial
velocity along the line of sight.

Fig. 2. Models of the profile ��z� and �inset� the exponentially
shaped laser pulse.

Fig. 3. Real laser-pulse shapes �dashed–dotted and solid curves�
and corresponding exponentially shaped approximations �dotted
and dashed curves� used in the simulations.
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�ṽ�z�ṽ�z � +z�� � 0.04C2,2�3 	0
� dK cos�K+z��K

2 �
K0

2�
5�6 exp�
K2�Km
2�, where C2 � 1.77, , is the

turbulent energy-loss rate, K0 � 1�L0, L0 is the outer
turbulence scale, Km � 5.92�lm, lm � l0�15C2�3�4, and
l0 is the inner turbulence scale. The corresponding
structure function Dzz�+z� � 2�Covv�0� 
 Covv�+z�
 is
an accurate and compact approximation �over the
corresponding ranges of definition� of the well-known
Kolmogorov–Obukhov radial structure function.20

For +z ## L0 we obtain Dzz � 2*v
2 � C2�,L0�

2�3, i.e.,
*v � C�,L0�

1�3�-2 . �,L0�
1�3. A similar expression

for *v is obtainable on the basis of a more rigorous
theoretical estimation.20 Thus at constant L0 the
changes of *v are due to the changes of ,. In the
simulations represented here we have assumed that
l0 � 1 mm, L0 � 100 m, and *v � 2 m�s. The
measuring procedure �of accumulating signal realiza-
tions� is assumed to be long enough under stationary
conditions that most of the velocity variation scales
can be averaged. For the case of uncorrelated veloc-
ity fluctuations the value of *v is assumed to be 4 m�s.

An additive stationary random noise n�t� is also
simulated. It can be represented as n�t� � nwn�t� �
n�wnr�t� � jwni�t�
. In the case of uncorrelated noise,
wn�t � l�t� � wnl � w �see above�, and consequently
�wnlwns*� � 0 for l � s. In the case of correlated
noise the covariance Covn � �wnlwns*� is chosen to
have a Gaussian form Covn��s 
 l ��t
 � exp�
�s 

l �2��t�2��n

2
, where �n is the noise correlation time.
Because the in-phase and quadrature channels are
statistically independent, it is implied that �wnrwni�
� 0 and �wnr�l�t�wnr�s�t�� � �wni�l�t�wni�s�t�� �
�1⁄2�exp�
�s 
 l �2��t�2��n

2
. The signal-to-noise ra-
tio �SNR� is specified as the ratio of the time-averaged
signal power P � �1��t2 
 t1�
 	t1

t2 P�t�dt to the mean
noise power Pn � n2; z1 � ct1�2 and z2 � ct2�2 are the
initial and the final points, respectively, of the wind-
vortex zone. At the same time it is clear that the
actual SNR, SNRa � P�t��n2, may strongly vary with
t �respectively, with z� because of strong variations of
the power P�t�.

The covariance estimates are obtained according to
the relation

Cov̂�t, � � m�t� � N
1 �
k�1

N

�Ik�t� � nk�t�
*�Ik�t

� m�t� � nk�t � m�t�
, (15)

where t � l�t � 2l�z�c �l � 0, 1, 2, . . .�, and N is the
number of statistically independent �at least with
respect to the additive and the speckle noise� realiza-
tions used, Ik�t� � nk�t�. At m � 0, Eq. �15� provides

the estimate P̂�t� � Cov̂�t, � � 0� of the signal power
profile P�t� � Cov�t, � � 0�. After P̂�t� is known, we
obtain by deconvolution14 the estimate �̂�z � ct�2� of
the short-pulse signal power profile ��z � ct�2�.

The simulations conducted with the above-
described exponential pulse-shape model �see Fig. 2�
show that algorithms �13� and �14� allow one to
achieve a high spatial resolution of retrieving the
profile of v�z�, but on the basis of sufficiently large

number of realizations �laser shots� N to reduce the
error that is due to noise. The corresponding data-
accumulation time ta plays the role of time constant
of the measuring procedure and limits the ability of
observing fast changeable atmospheric processes
�whose period of stationarity ts � ta�. Filtering the

covariance estimate Cov̂�t, �� and the retrieved profile
vr�z� �corresponding to v�z�
, as well as P̂�t� and �̂�z �
ct�2�, is a way to suppress the noise influence and
thus to reduce the value of N required for ensuring a
prescribed accuracy. However, the effective width
of the filter window should have an optimum �not
very large� value, ensuring a satisfactory noise sup-
pression at an acceptable range resolution.

Profiles of vr�z� retrieved on the basis of relations
�13� and �14�, in the absence of additive noise and
radial-velocity fluctuations, are given by the solid
curves in Figs. 4�a� and 4�b�, respectively. The same
results are obtained in the presence of additive noise
at SNR � 100. As is evident, these profiles are
closely coincident with the given �to be retrieved�
wind-vortex-like model of v�z� �dashed curves�. The
velocity deviation averaged along the line of sight
�within the vortex zone� is 0.67 m�s for Fig. 4�a� and
0.54 m�s for Fig. 4�b�. As everywhere in the subse-
quent discussion, the number of simulated signal re-

alizations is N � 300, and a smoothing of Cov̂�t, ��,

Cov̂�t, 0�, �̂�z � ct�2�, and vr�z � ct�2� is performed

Fig. 4. Doppler-velocity profiles vr�z� restored by use of �a� algo-
rithm �13� and �b� algorithm �14�. The original profile v�z�
�dashed curve� and the profile resulting from applying a pulse-pair
algorithm �dotted curve� are given for comparison.
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with a smooth monotone sharp-cutoff digital filter21

with ���10�t�-wide passband. The resolution cell
achieved in this way is R ) 15 m. It is less than the
resolution cell Rp � lp�2�)60 m� that is defined by
the effective pulse length lp ) 120 m.

The dotted curves in Figs. 4�a� and 4�b� represent
the profile of vr�z� obtained by use of a pulse-pair �PP�
algorithm.22 The number of sampling points used
along the line of sight is M � 20. The resolution cell
achievable in this case is Rpp ) 90 m # Rp. The
speckle noise is reduced to a negligible value by an

additional averaging of Cov̂�t, �� over N � 300 real-
izations of I�t�. However, as is evident, there is a
noticeable distortion of the restored profile vr�z� �with
respect to v�z�
 that is due to the averaging along the
line of sight and to the finite pulse duration. When
the number of sampling points is reduced from M �
20 to M � 2, the distortion of the profile vr�z� does not
diminish as, because of the convolving effect of the
sensing laser pulse, the PP resolution cell Rpp cannot
be less than Rp ) 60 m. Such a lower bound of the
resolution cell is intrinsic to the Doppler-velocity es-
timators that do not perform any deconvolution pro-
cedures.

In Figs. 5�a� and 5�b� we have represented by dot-
ted curves the Doppler-velocity profiles vr�z� restored

by use of algorithms �13� and �14�, respectively, in the
presence of uncorrelated additive noise at a mean
SNR � 10. The profile of the actual SNR, SNRa�z �
ct�2�, along the line of sight is also given by a dashed–
dotted curve. It is seen that there is no noticeable
difference between the profiles restored in the pres-
ence of additive noise and the profiles �solid curves�
restored in the absence of such a noise. As in Figs.
4�a� and 4�b�, these profiles are closely coincident
with the model given of v�z� �dashed curve�. When
SNR � 1, the restored profiles vr�z� are near the
model of v�z� and the profiles retrieved in the absence
of additive noise, but the boundary filtering effects
near z � z0 become more apparent.

Let us note that at uncorrelated �wideband� addi-
tive noise the statistical estimates �of %�t, �� and G�t�,

respectively
 %̂�t, �� � Cov̂ttt
III�t, �� � �6���Cov̂tt

II�t, ��

� �12��2�Cov̂ t
I�t, �� � �8��3�Cov̂�t, �� �at � � 0� and

Ĝ�t� � %̂���t, � � 0� are unbiased ones, i.e., �%̂�t, ��� �
%�t, �� and �Ĝ�t�� � G�t�. Therefore algorithms �13�
and �14� do not lead in this case to any systematic
errors in the final results for vr�z�. That is, at a
sufficiently large statistical volume N, one can in
principle recover v�z� with an arbitrary high accu-
racy.

When the additive noise is correlated we obtain
�%̂�t, ��� � %�t, �� � Covn��� and �Ĝ�t�� � G�t�; Covn���
is assumed to be differentiable at � � 0. Conse-
quently, the use of algorithm �14� would not lead to
the appearance of systematic errors. Such errors
may arise, however, in the results obtained on the
basis of Eq. �13�. They are not reducible by increas-
ing N, but can be removed if, instead of %̂�t, ��, one
uses in Eq. �13� another unbiased estimate of %�t, ��.

Such an estimate is %̂̂�t, �� �%̂�t, �� 
 �8��3�Cov̂n���,

where Cov̂n��� is an experimentally determined esti-
mate of Covn���. The simulations conducted with
Gaussian-correlated additive noise show that at
SNR # 10 the noise influence on the final results for
vr�z� is negligible. When SNR � 1, Eq. �14� leads to
near results. Equation �13� leads to near results
only when the estimate %̂̂�t, �� � %̂�t, �� 
 �8��3�

Cov̂n��� is used, where Cov̂n��� is obtained as an in-
dependent estimate of Covn��� �see Fig. 6, solid
curve�. Then the velocity deviation averaged within
the vortex zone is 1.55 m�s. When the estimate %̂�t,
�� is used, the results obtained for vr�z� differ notice-
ably from v�z� �Fig. 6, dotted curve�. The correlation
time �n has been varied in simulations from �n � 3�t
to �n � 40�t, but any visible difference has not been
noted.

From the results from the simulations, one may
conclude that, despite the speckle and additive noise
effects, the algorithms developed here allow one to
retrieve sharply varying �wind-vortex-like� Doppler-
velocity profiles whose size is less than the resolution
cell conditioned by the sensing laser-pulse length.
The achievable average retrieving accuracy can be of
the order of 1 m�s or less �at SNR � 10� when appro-

Fig. 5. Doppler-velocity profiles vr�z� �dotted curves� restored by
use of �a� algorithm �13� and �b� algorithm �14� in the presence of
uncorrelated additive noise. The original profile v�z� �dashed
curve� and the profiles restored in the absence of additive noise
�solid curves� are given for comparison. The actual SNR,
SNRa�z�, is indicated by the dashed–dotted curve.
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priate data processing is performed based on a rea-
sonable number of signal realizations.

To show mainly the effect of the radial-velocity
fluctuations, we have simulated such fluctuations in
the absence of additive noise. The profiles vr�z� re-
covered on the basis of Eqs. �13� and �14� are shown
in Figs. 7�a� and 7�b�, respectively. It is seen that in
the case of uncorrelated velocity fluctuations the pro-

files vr�z� closely follow the model v�z� with rare de-
viations of the order of 4 m�s. The velocity deviation
averaged along the line of sight �within the vortex
zone� is 1.5 m�s for Fig. 7�a� and 1.56 m�s for Fig.
7�b�. In the case of turbulent velocity fluctuations
the profiles of vr�z� are near v�z� with average devi-
ations of 1 m�s �Fig. 7�a�
 and 0.9 m�s �Fig. 7�b�
 for
*v � 2 m�s. Thus one can in principle recover v�z� in
the presence of relatively strong velocity fluctuations.

The results from simulating the performance of
algorithm �14� by use of the real pulse shapes �and
their exponential approximations� given in Fig. 3 are
represented in Fig. 8. The results are similar to
those obtained from simulating the performance of
algorithm �13�. It is seen that the recovered high-
resolution Doppler-velocity profiles are near those ob-
tained by simulations in which an entirely
exponentially shaped pulse model is entirely used.
Thus the exponential pulse-shape approximations
used turn out to be suitable and effective.

6. Conclusion

In the present work we have developed inverse math-
ematical techniques for improving the range resolu-
tion of determining Doppler-velocity profiles on the
basis of data from coherent heterodyne lidars with
exponentially shaped sensing laser pulses. These
techniques are based on the analysis of the complex
heterodyne signal autocovariance that is represented
here in a general form, taking into account the phase
and frequency fluctuations of the sensing �pulsed�
radiation as well as its pulse-shape fluctuations and
regular frequency deviation �chirp�. The fluctua-
tions of the radial velocity of the aerosol scatterers
are also taken into account.

The algorithms obtained and investigated here for
retrieving high-resolution Doppler-velocity profiles
are strictly valid when the chirp effect is negligible
and the relative pulse-shape fluctuations are station-
ary. They allow one in principle to determine the
Doppler-velocity profiles with an �ideal� resolution

Fig. 6. Doppler velocity profiles vr�z� restored by use of algorithm
�13� in the presence of correlated additive noise with �solid curve�
and without �dotted curve� compensation of the bias of the auto-
covariance estimate. The original profile v�z� �dashed curve� is
also shown.

Fig. 7. Doppler-velocity profiles vr�z� recovered on the basis of �a�
algorithm �13� and �b� algorithm �14� in the presence of uncorre-
lated velocity fluctuations with * � 4 m�s �dotted curves� and
turbulent �correlated� velocity fluctuations with * � 2 m�s �solid
curves�. The original profile v�z� �dashed curve� is given for com-
parison.

Fig. 8. Original Doppler-velocity profile �solid curve� and two pro-
files, restored by algorithm �14�, resulting from simulations in
which real laser pulses were used for synthesis of the coherent-
lidar signal. The dashed and the dotted curves correspond to the
dashed–dotted and the solid shapes in Fig. 3.
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cell that is of the order of the sampling interval. The
real achievable resolution cell, however, is larger be-
cause of the filtering procedure required for suppress-
ing the disturbing noise effects. The noise effects
have been investigated by computer simulations.
Except for the speckle noise that always is present,
uncorrelated and correlated additive noise has also
been simulated. The Doppler-velocity profile to be
retrieved is chosen to have a small-size sharply vary-
ing �wind-vortex-like� form. The results from simu-
lations show that, by using appropriate filtering
procedures and bias-compensating approaches �see
Section 5�, one can restore satisfactorily wind-vortex-
like profiles at a reasonable number of signal realiza-
tions N � 300. The achievable accuracy may be of
the order of 1–2 m�s at a SNR of the order of unity.

The influence of the radial-velocity fluctuations has
also been investigated by computer simulations. It
is shown that, at a mean-square velocity deviation up
to )5 m�s, one can identify sharply varying radial-
velocity distributions with an accuracy of )1–2 m�s.

As a whole, the inverse techniques developed in
this work allow one to retrieve Doppler-velocity pro-
files with a resolution cell that is essentially smaller
than that conditioned by the pulse length.

This research was supported in part by the Bulgar-
ian National Science Fund under grant F-907.
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